Nuprl Lemma : product-map
∀[A,B,C:Type].
  ∀as:A List. ∀bs:B List. ∀F:A ⟶ B ⟶ C.  ∃cs:C List. ∀c:C. ((c ∈ cs) 
⇐⇒ (∃a∈as. (∃b∈bs. c = (F a b) ∈ C)))
Proof
Definitions occuring in Statement : 
l_exists: (∃x∈L. P[x])
, 
l_member: (x ∈ l)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
product-map_wf, 
exists_wf, 
l_member_wf, 
equal_wf, 
member-product-map, 
l_exists_iff, 
l_exists_wf, 
iff_wf, 
all_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
dependent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
hypothesis, 
independent_pairFormation, 
sqequalRule, 
lambdaEquality, 
productEquality, 
because_Cache, 
addLevel, 
productElimination, 
impliesFunctionality, 
dependent_functionElimination, 
independent_functionElimination, 
existsFunctionality, 
setElimination, 
rename, 
setEquality, 
andLevelFunctionality, 
levelHypothesis, 
existsLevelFunctionality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[A,B,C:Type].
    \mforall{}as:A  List.  \mforall{}bs:B  List.  \mforall{}F:A  {}\mrightarrow{}  B  {}\mrightarrow{}  C.
        \mexists{}cs:C  List.  \mforall{}c:C.  ((c  \mmember{}  cs)  \mLeftarrow{}{}\mRightarrow{}  (\mexists{}a\mmember{}as.  (\mexists{}b\mmember{}bs.  c  =  (F  a  b))))
Date html generated:
2018_05_22-AM-00_19_50
Last ObjectModification:
2017_07_26-PM-06_54_24
Theory : rationals
Home
Index