Nuprl Lemma : product-map

[A,B,C:Type].
  ∀as:A List. ∀bs:B List. ∀F:A ⟶ B ⟶ C.  ∃cs:C List. ∀c:C. ((c ∈ cs) ⇐⇒ (∃a∈as. (∃b∈bs. (F b) ∈ C)))


Proof




Definitions occuring in Statement :  l_exists: (∃x∈L. P[x]) l_member: (x ∈ l) list: List uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q
Lemmas referenced :  product-map_wf exists_wf l_member_wf equal_wf member-product-map l_exists_iff l_exists_wf iff_wf all_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation dependent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality functionExtensionality applyEquality hypothesis independent_pairFormation sqequalRule lambdaEquality productEquality because_Cache addLevel productElimination impliesFunctionality dependent_functionElimination independent_functionElimination existsFunctionality setElimination rename setEquality andLevelFunctionality levelHypothesis existsLevelFunctionality functionEquality universeEquality

Latex:
\mforall{}[A,B,C:Type].
    \mforall{}as:A  List.  \mforall{}bs:B  List.  \mforall{}F:A  {}\mrightarrow{}  B  {}\mrightarrow{}  C.
        \mexists{}cs:C  List.  \mforall{}c:C.  ((c  \mmember{}  cs)  \mLeftarrow{}{}\mRightarrow{}  (\mexists{}a\mmember{}as.  (\mexists{}b\mmember{}bs.  c  =  (F  a  b))))



Date html generated: 2018_05_22-AM-00_19_50
Last ObjectModification: 2017_07_26-PM-06_54_24

Theory : rationals


Home Index