Nuprl Lemma : q-triangle-inequality3
∀[x,y,a,b:ℚ].  (|x + y| ≤ (a + b)) supposing ((|y| ≤ b) and (|x| ≤ a))
Proof
Definitions occuring in Statement : 
qabs: |r|
, 
qle: r ≤ s
, 
qadd: r + s
, 
rationals: ℚ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
qge: a ≥ b
, 
guard: {T}
Lemmas referenced : 
q-triangle-inequality, 
qle_witness, 
qabs_wf, 
qadd_wf, 
qle_wf, 
rationals_wf, 
qle_functionality_wrt_implies, 
qle_weakening_eq_qorder, 
qadd_functionality_wrt_qle
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination
Latex:
\mforall{}[x,y,a,b:\mBbbQ{}].    (|x  +  y|  \mleq{}  (a  +  b))  supposing  ((|y|  \mleq{}  b)  and  (|x|  \mleq{}  a))
Date html generated:
2016_05_15-PM-11_32_29
Last ObjectModification:
2015_12_27-PM-07_29_18
Theory : rationals
Home
Index