Nuprl Lemma : q-triangle-inequality3

[x,y,a,b:ℚ].  (|x y| ≤ (a b)) supposing ((|y| ≤ b) and (|x| ≤ a))


Proof




Definitions occuring in Statement :  qabs: |r| qle: r ≤ s qadd: s rationals: uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a implies:  Q prop: qge: a ≥ b guard: {T}
Lemmas referenced :  q-triangle-inequality qle_witness qabs_wf qadd_wf qle_wf rationals_wf qle_functionality_wrt_implies qle_weakening_eq_qorder qadd_functionality_wrt_qle
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_functionElimination sqequalRule isect_memberEquality because_Cache equalityTransitivity equalitySymmetry independent_isectElimination

Latex:
\mforall{}[x,y,a,b:\mBbbQ{}].    (|x  +  y|  \mleq{}  (a  +  b))  supposing  ((|y|  \mleq{}  b)  and  (|x|  \mleq{}  a))



Date html generated: 2016_05_15-PM-11_32_29
Last ObjectModification: 2015_12_27-PM-07_29_18

Theory : rationals


Home Index