Nuprl Lemma : q-triangle-inequality

[r,s:ℚ].  (|r s| ≤ (|r| |s|))


This theorem is one of freek's list of 100 theorems



Proof




Definitions occuring in Statement :  qabs: |r| qle: r ≤ s qadd: s rationals: uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T qabs: |r| uimplies: supposing a callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) implies:  Q subtype_rel: A ⊆B prop: all: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A false: False squash: T and: P ∧ Q true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff nat: le: A ≤ B less_than': less_than'(a;b) so_lambda: λ2x.t[x] so_apply: x[s] sq_exists: x:A [B[x]] isl: isl(x) bnot: ¬bb assert: b q-constraints: q-constraints(k;A;y) top: Top cand: c∧ B l_all: (∀x∈L.P[x]) int_seg: {i..j-} sq_type: SQType(T) select: L[n] cons: [a b] pi2: snd(t) pi1: fst(t) q-rel: q-rel(r;x) eq_int: (i =z j) nat_plus: + less_than: a < b subtract: m select?: as[i]?a lt_int: i <j lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] rev_uimplies: rev_uimplies(P;Q) qadd: s evalall: evalall(t)
Lemmas referenced :  valueall-type-has-valueall rationals_wf rationals-valueall-type qadd_wf evalall-reduce qle_witness qabs_wf qpositive_wf bool_wf equal-wf-T-base assert_wf qless_wf int-subtype-rationals qle_reflexivity bnot_wf not_wf decidable__qle qmul_wf qle_wf squash_wf true_wf qmul_over_plus_qrng subtype_rel_self iff_weakening_equal uiff_transitivity eqtt_to_assert assert-qpositive iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot equal_wf decidable__q-constraints-opt false_wf le_wf cons_wf nat_wf select?_wf nil_wf outr_wf sq_exists_wf list_wf q-constraints_wf length_of_cons_lemma length_of_nil_lemma decidable__equal_int subtype_base_sq int_subtype_base int_seg_properties q-linear-unroll less_than_wf q-linear-base int_seg_subtype int_seg_cases full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf int_seg_wf qadd_preserves_qless mon_ident_q qadd_preserves_qle qless_complement_qorder qle_complement_qorder qmul_one_qrng mon_assoc_q qadd_comm_q qmul_zero_qrng qinverse_q qadd_ac_1_q q_distrib qadd_inv_assoc_q qmul_ident
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis independent_isectElimination hypothesisEquality callbyvalueReduce because_Cache independent_functionElimination isect_memberEquality equalityTransitivity equalitySymmetry baseClosed natural_numberEquality applyEquality dependent_functionElimination minusEquality unionElimination voidElimination lambdaEquality imageElimination productElimination imageMemberEquality instantiate universeEquality lambdaFormation equalityElimination independent_pairFormation impliesFunctionality dependent_set_memberEquality productEquality functionEquality intEquality independent_pairEquality computeAll dependent_set_memberFormation voidEquality setElimination rename cumulativity hypothesis_subsumption addEquality approximateComputation dependent_pairFormation int_eqEquality

Latex:
\mforall{}[r,s:\mBbbQ{}].    (|r  +  s|  \mleq{}  (|r|  +  |s|))



Date html generated: 2018_05_22-AM-00_25_59
Last ObjectModification: 2018_05_19-PM-04_08_06

Theory : rationals


Home Index