Nuprl Lemma : select?_wf

[A:Type]. ∀[as:A List]. ∀[a:A]. ∀[i:ℕ].  (as[i]?a ∈ A)


Proof




Definitions occuring in Statement :  select?: as[i]?a list: List nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T select?: as[i]?a nat: uimplies: supposing a ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top and: P ∧ Q prop: bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff guard: {T}
Lemmas referenced :  nat_wf list_wf lt_int_wf length_wf bool_wf equal-wf-T-base assert_wf less_than_wf select_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf le_int_wf le_wf bnot_wf uiff_transitivity eqtt_to_assert assert_of_lt_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry extract_by_obid isect_memberEquality isectElimination thin hypothesisEquality because_Cache cumulativity universeEquality setElimination rename baseClosed independent_isectElimination dependent_functionElimination natural_numberEquality unionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality voidElimination voidEquality independent_pairFormation computeAll lambdaFormation equalityElimination independent_functionElimination productElimination

Latex:
\mforall{}[A:Type].  \mforall{}[as:A  List].  \mforall{}[a:A].  \mforall{}[i:\mBbbN{}].    (as[i]?a  \mmember{}  A)



Date html generated: 2018_05_22-AM-00_20_52
Last ObjectModification: 2017_07_26-PM-06_55_24

Theory : rationals


Home Index