Nuprl Lemma : q-constraints_wf

[A:(ℕ ⟶ ℚ × ℤList]. ∀[k:ℕ]. ∀[y:ℚ List].  (q-constraints(k;A;y) ∈ ℙ)


Proof




Definitions occuring in Statement :  q-constraints: q-constraints(k;A;y) rationals: list: List nat: uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x] int:
Definitions unfolded in proof :  q-constraints: q-constraints(k;A;y) uall: [x:A]. B[x] member: t ∈ T prop: cand: c∧ B nat: so_lambda: λ2x.t[x] all: x:A. B[x] pi2: snd(t) pi1: fst(t) so_apply: x[s] uimplies: supposing a ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top and: P ∧ Q
Lemmas referenced :  equal_wf length_wf rationals_wf l_all_wf2 nat_wf l_member_wf q-rel_wf q-linear_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut productEquality extract_by_obid sqequalHypSubstitution isectElimination thin intEquality hypothesis hypothesisEquality setElimination rename because_Cache functionEquality lambdaEquality lambdaFormation productElimination independent_pairEquality functionExtensionality applyEquality independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry unionElimination natural_numberEquality dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll setEquality axiomEquality

Latex:
\mforall{}[A:(\mBbbN{}  {}\mrightarrow{}  \mBbbQ{}  \mtimes{}  \mBbbZ{})  List].  \mforall{}[k:\mBbbN{}].  \mforall{}[y:\mBbbQ{}  List].    (q-constraints(k;A;y)  \mmember{}  \mBbbP{})



Date html generated: 2018_05_22-AM-00_19_44
Last ObjectModification: 2017_07_26-PM-06_54_19

Theory : rationals


Home Index