Nuprl Lemma : q-constraints_wf
∀[A:(ℕ ⟶ ℚ × ℤ) List]. ∀[k:ℕ]. ∀[y:ℚ List].  (q-constraints(k;A;y) ∈ ℙ)
Proof
Definitions occuring in Statement : 
q-constraints: q-constraints(k;A;y)
, 
rationals: ℚ
, 
list: T List
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
int: ℤ
Definitions unfolded in proof : 
q-constraints: q-constraints(k;A;y)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
cand: A c∧ B
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
Lemmas referenced : 
equal_wf, 
length_wf, 
rationals_wf, 
l_all_wf2, 
nat_wf, 
l_member_wf, 
q-rel_wf, 
q-linear_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
productEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
hypothesis, 
hypothesisEquality, 
setElimination, 
rename, 
because_Cache, 
functionEquality, 
lambdaEquality, 
lambdaFormation, 
productElimination, 
independent_pairEquality, 
functionExtensionality, 
applyEquality, 
independent_isectElimination, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
setEquality, 
axiomEquality
Latex:
\mforall{}[A:(\mBbbN{}  {}\mrightarrow{}  \mBbbQ{}  \mtimes{}  \mBbbZ{})  List].  \mforall{}[k:\mBbbN{}].  \mforall{}[y:\mBbbQ{}  List].    (q-constraints(k;A;y)  \mmember{}  \mBbbP{})
Date html generated:
2018_05_22-AM-00_19_44
Last ObjectModification:
2017_07_26-PM-06_54_19
Theory : rationals
Home
Index