Nuprl Lemma : q-linear-base

[X:ℕ ⟶ ℚ]. ∀[y:ℚ List].  (q-linear(0;j.X[j];y) X[0] ∈ ℚ)


Proof




Definitions occuring in Statement :  q-linear: q-linear(k;i.X[i];y) rationals: list: List nat: uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T q-linear: q-linear(k;i.X[i];y) so_apply: x[s] all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: false: False nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) not: ¬A implies:  Q guard: {T} int_seg: {i..j-} lelt: i ≤ j < k true: True squash: T so_lambda: λ2x.t[x] subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  list_wf rationals_wf nat_wf decidable__equal_int satisfiable-full-omega-tt intformnot_wf intformeq_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_constant_lemma int_formula_prop_wf false_wf le_wf qmul_wf int_seg_properties intformand_wf intformless_wf itermVar_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_le_lemma select_wf int_seg_wf equal_wf squash_wf true_wf qadd_wf sum_unroll_base_q iff_weakening_equal int-subtype-rationals qadd_comm_q mon_ident_q
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin sqequalRule isect_memberEquality hypothesisEquality axiomEquality because_Cache functionEquality applyEquality functionExtensionality dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination dependent_pairFormation lambdaEquality intEquality voidElimination voidEquality computeAll dependent_set_memberEquality equalityTransitivity equalitySymmetry independent_pairFormation lambdaFormation setElimination rename productElimination int_eqEquality imageElimination universeEquality imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}[X:\mBbbN{}  {}\mrightarrow{}  \mBbbQ{}].  \mforall{}[y:\mBbbQ{}  List].    (q-linear(0;j.X[j];y)  =  X[0])



Date html generated: 2018_05_22-AM-00_17_24
Last ObjectModification: 2017_07_26-PM-06_53_21

Theory : rationals


Home Index