Nuprl Lemma : qlog-ext
∀e:{e:ℚ| 0 < e} . ∀q:{q:ℚ| (0 ≤ q) ∧ q < 1} . {n:ℕ+| ((e ≤ 1)
⇒ (e ≤ q ↑ n - 1)) ∧ q ↑ n < e}
Proof
Definitions occuring in Statement :
qexp: r ↑ n
,
qle: r ≤ s
,
qless: r < s
,
rationals: ℚ
,
nat_plus: ℕ+
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
and: P ∧ Q
,
set: {x:A| B[x]}
,
subtract: n - m
,
natural_number: $n
Definitions unfolded in proof :
member: t ∈ T
,
qlog-exists,
decidable__qle,
ifthenelse: if b then t else f fi
,
uall: ∀[x:A]. B[x]
,
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
,
so_apply: x[s1;s2;s3;s4]
,
so_lambda: λ2x.t[x]
,
top: Top
,
so_apply: x[s]
,
uimplies: b supposing a
,
strict4: strict4(F)
,
and: P ∧ Q
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
has-value: (a)↓
,
prop: ℙ
,
guard: {T}
,
or: P ∨ Q
,
squash: ↓T
,
bor: p ∨bq
,
btrue: tt
,
uniform-comp-nat-induction,
qlog-lemma-ext,
genrec-ap: genrec-ap,
decidable__equal_int,
decidable__int_equal
Lemmas referenced :
qlog-exists,
lifting-strict-decide,
top_wf,
equal_wf,
has-value_wf_base,
base_wf,
is-exception_wf,
lifting-strict-int_eq,
decidable__qle,
uniform-comp-nat-induction,
qlog-lemma-ext,
decidable__equal_int,
decidable__int_equal
Rules used in proof :
introduction,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
cut,
instantiate,
extract_by_obid,
hypothesis,
sqequalRule,
thin,
sqequalHypSubstitution,
isectElimination,
baseClosed,
isect_memberEquality,
voidElimination,
voidEquality,
independent_isectElimination,
independent_pairFormation,
lambdaFormation,
callbyvalueDecide,
hypothesisEquality,
equalityTransitivity,
equalitySymmetry,
unionEquality,
unionElimination,
sqleReflexivity,
dependent_functionElimination,
independent_functionElimination,
baseApply,
closedConclusion,
decideExceptionCases,
inrFormation,
because_Cache,
imageMemberEquality,
imageElimination,
exceptionSqequal,
inlFormation
Latex:
\mforall{}e:\{e:\mBbbQ{}| 0 < e\} . \mforall{}q:\{q:\mBbbQ{}| (0 \mleq{} q) \mwedge{} q < 1\} . \{n:\mBbbN{}\msupplus{}| ((e \mleq{} 1) {}\mRightarrow{} (e \mleq{} q \muparrow{} n - 1)) \mwedge{} q \muparrow{} n < e\}
Date html generated:
2018_05_22-AM-00_14_19
Last ObjectModification:
2017_07_26-PM-06_52_38
Theory : rationals
Home
Index