Nuprl Lemma : qlog-ext

e:{e:ℚ0 < e} . ∀q:{q:ℚ(0 ≤ q) ∧ q < 1} .  {n:ℕ+((e ≤ 1)  (e ≤ q ↑ 1)) ∧ q ↑ n < e} 


Proof




Definitions occuring in Statement :  qexp: r ↑ n qle: r ≤ s qless: r < s rationals: nat_plus: + all: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]}  subtract: m natural_number: $n
Definitions unfolded in proof :  member: t ∈ T qlog-exists decidable__qle ifthenelse: if then else fi  uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2x.t[x] top: Top so_apply: x[s] uimplies: supposing a strict4: strict4(F) and: P ∧ Q all: x:A. B[x] implies:  Q has-value: (a)↓ prop: guard: {T} or: P ∨ Q squash: T bor: p ∨bq btrue: tt uniform-comp-nat-induction qlog-lemma-ext genrec-ap: genrec-ap decidable__equal_int decidable__int_equal
Lemmas referenced :  qlog-exists lifting-strict-decide top_wf equal_wf has-value_wf_base base_wf is-exception_wf lifting-strict-int_eq decidable__qle uniform-comp-nat-induction qlog-lemma-ext decidable__equal_int decidable__int_equal
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution isectElimination baseClosed isect_memberEquality voidElimination voidEquality independent_isectElimination independent_pairFormation lambdaFormation callbyvalueDecide hypothesisEquality equalityTransitivity equalitySymmetry unionEquality unionElimination sqleReflexivity dependent_functionElimination independent_functionElimination baseApply closedConclusion decideExceptionCases inrFormation because_Cache imageMemberEquality imageElimination exceptionSqequal inlFormation

Latex:
\mforall{}e:\{e:\mBbbQ{}|  0  <  e\}  .  \mforall{}q:\{q:\mBbbQ{}|  (0  \mleq{}  q)  \mwedge{}  q  <  1\}  .    \{n:\mBbbN{}\msupplus{}|  ((e  \mleq{}  1)  {}\mRightarrow{}  (e  \mleq{}  q  \muparrow{}  n  -  1))  \mwedge{}  q  \muparrow{}  n  <  e\} 



Date html generated: 2018_05_22-AM-00_14_19
Last ObjectModification: 2017_07_26-PM-06_52_38

Theory : rationals


Home Index