Nuprl Lemma : qlog-exists
∀e:{e:ℚ| 0 < e} . ∀q:{q:ℚ| (0 ≤ q) ∧ q < 1} .  {n:ℕ+| ((e ≤ 1) 
⇒ (e ≤ q ↑ n - 1)) ∧ q ↑ n < e} 
Proof
Definitions occuring in Statement : 
qexp: r ↑ n
, 
qle: r ≤ s
, 
qless: r < s
, 
rationals: ℚ
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
subtract: n - m
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
nat_plus: ℕ+
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
cand: A c∧ B
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than: a < b
, 
squash: ↓T
, 
sq_type: SQType(T)
, 
guard: {T}
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
top: Top
, 
subtract: n - m
, 
true: True
, 
less_than': less_than'(a;b)
, 
sq_stable: SqStable(P)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
qge: a ≥ b
, 
uiff: uiff(P;Q)
, 
pi1: fst(t)
Lemmas referenced : 
rationals_wf, 
qle_wf, 
int-subtype-rationals, 
qless_wf, 
uniform-comp-nat-induction, 
all_wf, 
qexp_wf, 
set_wf, 
nat_plus_wf, 
subtract_wf, 
nat_plus_properties, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
istype-le, 
nat_plus_subtype_nat, 
istype-nat, 
decidable__qle, 
int_seg_wf, 
int_seg_properties, 
qlog-lemma-ext, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
qmul_wf, 
qexp1, 
istype-universe, 
equal_wf, 
qexp2, 
iff_weakening_equal, 
subtype_rel_self, 
true_wf, 
squash_wf, 
istype-void, 
add-commutes, 
istype-less_than, 
le_wf, 
set_subtype_base, 
qmul_one_qrng, 
qexp-zero, 
qless_transitivity_2_qorder, 
qless_irreflexivity, 
sq_stable_from_decidable, 
decidable__qless, 
qless_functionality_wrt_implies_1, 
qle_weakening_eq_qorder, 
decidable__lt, 
zero-le-nat, 
qmul_preserves_qless, 
qexp-positive, 
qless_witness, 
qexp-add, 
subtract-add-cancel, 
qmul_preserves_qle, 
qexp_preserves_qle, 
qle_weakening_lt_qorder, 
qexp-one, 
qle_reflexivity, 
qle_functionality_wrt_implies, 
qmul_comm_qrng, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
add-zero, 
zero-mul, 
add-mul-special, 
minus-one-mul, 
add-associates, 
qdiv_wf, 
qmul_zero_qrng, 
qmul-qdiv-cancel, 
int_term_value_add_lemma, 
itermAdd_wf, 
qle_witness, 
qmul_preserves_qle2, 
qmul_com, 
exp_zero_q, 
qle_complement_qorder, 
qlog-bound, 
qless_transitivity_1_qorder
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
setIsType, 
universeIsType, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
productIsType, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
closedConclusion, 
natural_numberEquality, 
applyEquality, 
hypothesisEquality, 
because_Cache, 
lambdaEquality_alt, 
setEquality, 
productEquality, 
setElimination, 
rename, 
dependent_set_memberEquality_alt, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
voidElimination, 
isect_memberFormation_alt, 
isectIsType, 
functionIsType, 
imageElimination, 
instantiate, 
cumulativity, 
intEquality, 
universeEquality, 
inhabitedIsType, 
isect_memberEquality_alt, 
baseClosed, 
imageMemberEquality, 
equalitySymmetry, 
equalityTransitivity, 
baseApply, 
equalityIsType4, 
applyLambdaEquality, 
hyp_replacement, 
promote_hyp, 
minusEquality, 
multiplyEquality, 
equalityIsType3, 
addEquality
Latex:
\mforall{}e:\{e:\mBbbQ{}|  0  <  e\}  .  \mforall{}q:\{q:\mBbbQ{}|  (0  \mleq{}  q)  \mwedge{}  q  <  1\}  .    \{n:\mBbbN{}\msupplus{}|  ((e  \mleq{}  1)  {}\mRightarrow{}  (e  \mleq{}  q  \muparrow{}  n  -  1))  \mwedge{}  q  \muparrow{}  n  <  e\} 
Date html generated:
2020_05_20-AM-09_27_05
Last ObjectModification:
2020_01_04-PM-10_31_51
Theory : rationals
Home
Index