Nuprl Lemma : qlog-exists

e:{e:ℚ0 < e} . ∀q:{q:ℚ(0 ≤ q) ∧ q < 1} .  {n:ℕ+((e ≤ 1)  (e ≤ q ↑ 1)) ∧ q ↑ n < e} 


Proof




Definitions occuring in Statement :  qexp: r ↑ n qle: r ≤ s qless: r < s rationals: nat_plus: + all: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]}  subtract: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T and: P ∧ Q uall: [x:A]. B[x] subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] nat: nat_plus: + ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False cand: c∧ B so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than: a < b squash: T sq_type: SQType(T) guard: {T} rev_implies:  Q iff: ⇐⇒ Q top: Top subtract: m true: True less_than': less_than'(a;b) sq_stable: SqStable(P) rev_uimplies: rev_uimplies(P;Q) qge: a ≥ b uiff: uiff(P;Q) pi1: fst(t)
Lemmas referenced :  rationals_wf qle_wf int-subtype-rationals qless_wf uniform-comp-nat-induction all_wf qexp_wf set_wf nat_plus_wf subtract_wf nat_plus_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf istype-le nat_plus_subtype_nat istype-nat decidable__qle int_seg_wf int_seg_properties qlog-lemma-ext decidable__equal_int subtype_base_sq int_subtype_base qmul_wf qexp1 istype-universe equal_wf qexp2 iff_weakening_equal subtype_rel_self true_wf squash_wf istype-void add-commutes istype-less_than le_wf set_subtype_base qmul_one_qrng qexp-zero qless_transitivity_2_qorder qless_irreflexivity sq_stable_from_decidable decidable__qless qless_functionality_wrt_implies_1 qle_weakening_eq_qorder decidable__lt zero-le-nat qmul_preserves_qless qexp-positive qless_witness qexp-add subtract-add-cancel qmul_preserves_qle qexp_preserves_qle qle_weakening_lt_qorder qexp-one qle_reflexivity qle_functionality_wrt_implies qmul_comm_qrng int_formula_prop_eq_lemma intformeq_wf add-zero zero-mul add-mul-special minus-one-mul add-associates qdiv_wf qmul_zero_qrng qmul-qdiv-cancel int_term_value_add_lemma itermAdd_wf qle_witness qmul_preserves_qle2 qmul_com exp_zero_q qle_complement_qorder qlog-bound qless_transitivity_1_qorder
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut setIsType universeIsType introduction extract_by_obid hypothesis sqequalRule productIsType sqequalHypSubstitution isectElimination thin closedConclusion natural_numberEquality applyEquality hypothesisEquality because_Cache lambdaEquality_alt setEquality productEquality setElimination rename dependent_set_memberEquality_alt productElimination dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality Error :memTop,  independent_pairFormation voidElimination isect_memberFormation_alt isectIsType functionIsType imageElimination instantiate cumulativity intEquality universeEquality inhabitedIsType isect_memberEquality_alt baseClosed imageMemberEquality equalitySymmetry equalityTransitivity baseApply equalityIsType4 applyLambdaEquality hyp_replacement promote_hyp minusEquality multiplyEquality equalityIsType3 addEquality

Latex:
\mforall{}e:\{e:\mBbbQ{}|  0  <  e\}  .  \mforall{}q:\{q:\mBbbQ{}|  (0  \mleq{}  q)  \mwedge{}  q  <  1\}  .    \{n:\mBbbN{}\msupplus{}|  ((e  \mleq{}  1)  {}\mRightarrow{}  (e  \mleq{}  q  \muparrow{}  n  -  1))  \mwedge{}  q  \muparrow{}  n  <  e\} 



Date html generated: 2020_05_20-AM-09_27_05
Last ObjectModification: 2020_01_04-PM-10_31_51

Theory : rationals


Home Index