Nuprl Lemma : sbdecode_wf

[L:ℕList]. (sbdecode(L) ∈ ℕ+ × ℕ+)


Proof




Definitions occuring in Statement :  sbdecode: sbdecode(L) list: List int_seg: {i..j-} nat_plus: + uall: [x:A]. B[x] member: t ∈ T product: x:A × B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T sbdecode: sbdecode(L) int_seg: {i..j-} nat_plus: + guard: {T} lelt: i ≤ j < k and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: less_than: a < b squash: T less_than': less_than'(a;b) true: True
Lemmas referenced :  list_wf less_than_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermAdd_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt int_seg_properties nat_plus_properties nat_plus_wf int_seg_wf reduce_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesis productEquality because_Cache lambdaEquality productElimination int_eqEquality setElimination rename hypothesisEquality independent_pairEquality dependent_set_memberEquality addEquality equalityTransitivity equalitySymmetry dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll imageMemberEquality baseClosed axiomEquality

Latex:
\mforall{}[L:\mBbbN{}2  List].  (sbdecode(L)  \mmember{}  \mBbbN{}\msupplus{}  \mtimes{}  \mBbbN{}\msupplus{})



Date html generated: 2016_05_15-PM-10_34_14
Last ObjectModification: 2016_01_16-PM-09_37_41

Theory : rationals


Home Index