Nuprl Lemma : sbdecode_wf
∀[L:ℕ2 List]. (sbdecode(L) ∈ ℕ+ × ℕ+)
Proof
Definitions occuring in Statement : 
sbdecode: sbdecode(L)
, 
list: T List
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
product: x:A × B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
sbdecode: sbdecode(L)
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
Lemmas referenced : 
list_wf, 
less_than_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__lt, 
int_seg_properties, 
nat_plus_properties, 
nat_plus_wf, 
int_seg_wf, 
reduce_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
productEquality, 
because_Cache, 
lambdaEquality, 
productElimination, 
int_eqEquality, 
setElimination, 
rename, 
hypothesisEquality, 
independent_pairEquality, 
dependent_set_memberEquality, 
addEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
imageMemberEquality, 
baseClosed, 
axiomEquality
Latex:
\mforall{}[L:\mBbbN{}2  List].  (sbdecode(L)  \mmember{}  \mBbbN{}\msupplus{}  \mtimes{}  \mBbbN{}\msupplus{})
Date html generated:
2016_05_15-PM-10_34_14
Last ObjectModification:
2016_01_16-PM-09_37_41
Theory : rationals
Home
Index