Nuprl Lemma : test-q-norm-conv

[a,b,c:ℚ].  (((a b) (c b)) (((a c) (b c)) (b b) (a b)) ∈ ℚ)


Proof




Definitions occuring in Statement :  qmul: s qadd: s rationals: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T true: True squash: T prop: and: P ∧ Q subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  rationals_wf qadd_wf qmul_wf equal_wf squash_wf true_wf qmul_over_plus_qrng mon_assoc_q qadd_ac_1_q qadd_comm_q iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality axiomEquality because_Cache natural_numberEquality applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality productElimination imageMemberEquality baseClosed independent_isectElimination independent_functionElimination

Latex:
\mforall{}[a,b,c:\mBbbQ{}].    (((a  +  b)  *  (c  +  b))  =  (((a  *  c)  +  (b  *  c))  +  (b  *  b)  +  (a  *  b)))



Date html generated: 2018_05_21-PM-11_51_21
Last ObjectModification: 2017_07_26-PM-06_44_28

Theory : rationals


Home Index