Nuprl Lemma : Kleisli-cat_wf
∀[C:SmallCategory]. ∀M:Monad(C). (Kl(C;M) ∈ SmallCategory)
Proof
Definitions occuring in Statement : 
Kleisli-cat: Kl(C;M)
, 
cat-monad: Monad(C)
, 
small-category: SmallCategory
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
Kleisli-cat: Kl(C;M)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: so_lambda5, 
so_apply: x[s1;s2;s3;s4;s5]
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
mk-cat_wf, 
cat-ob_wf, 
cat-arrow_wf, 
monad-fun_wf, 
monad-unit_wf, 
cat-comp_wf, 
monad-extend_wf, 
equal_wf, 
squash_wf, 
true_wf, 
monad-unit-extend, 
iff_weakening_equal, 
monad-extend-unit, 
cat-comp-ident, 
cat-comp-assoc, 
monad-extend-comp, 
cat-monad_wf, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
independent_pairFormation, 
dependent_functionElimination, 
axiomEquality
Latex:
\mforall{}[C:SmallCategory].  \mforall{}M:Monad(C).  (Kl(C;M)  \mmember{}  SmallCategory)
Date html generated:
2020_05_20-AM-07_59_41
Last ObjectModification:
2017_07_28-AM-09_21_01
Theory : small!categories
Home
Index