Nuprl Lemma : select_fun_last_partial_ap1

[g:Top]. ∀[m:ℕ].  (select_fun_last(partial_ap(g;m 2;m 1);m) select_fun_ap(g;m 2;m))


Proof




Definitions occuring in Statement :  select_fun_last: select_fun_last(g;m) select_fun_ap: select_fun_ap(g;n;m) partial_ap: partial_ap(g;n;m) nat: uall: [x:A]. B[x] top: Top add: m natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T select_fun_ap: select_fun_ap(g;n;m) partial_ap: partial_ap(g;n;m) select_fun_last: select_fun_last(g;m) uimplies: supposing a nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: sq_type: SQType(T) guard: {T} mk_lambdas: mk_lambdas(F;m) and: P ∧ Q int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) eq_int: (i =z j) subtract: m ifthenelse: if then else fi  bfalse: ff btrue: tt
Lemmas referenced :  top_wf nat_wf false_wf mk_lambdas_fun-unroll-ite lelt_wf int_formula_prop_less_lemma intformless_wf decidable__lt le_wf int_formula_prop_le_lemma int_formula_prop_and_lemma intformle_wf intformand_wf decidable__le mk_lambdas_fun_lambdas2 primrec0_lemma primrec1_lemma int_formula_prop_wf int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_subtract_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermConstant_wf itermVar_wf itermAdd_wf itermSubtract_wf intformeq_wf intformnot_wf satisfiable-full-omega-tt decidable__equal_int nat_properties int_subtype_base subtype_base_sq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination because_Cache independent_isectElimination hypothesis hypothesisEquality setElimination rename dependent_functionElimination unionElimination natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll equalityTransitivity equalitySymmetry independent_functionElimination dependent_set_memberEquality addEquality independent_pairFormation productElimination lambdaFormation sqequalAxiom

Latex:
\mforall{}[g:Top].  \mforall{}[m:\mBbbN{}].    (select\_fun\_last(partial\_ap(g;m  +  2;m  +  1);m)  \msim{}  select\_fun\_ap(g;m  +  2;m))



Date html generated: 2016_05_15-PM-02_11_57
Last ObjectModification: 2016_01_15-PM-10_20_12

Theory : untyped!computation


Home Index