Nuprl Lemma : p-adic-inv-lemma1
∀p:{p:{2...}| prime(p)} . ∀a:{a:p-adics(p)| ¬((a 1) = 0 ∈ ℤ)} . ∀n:ℕ+.  (∃c:ℕp^n [((c * (a n)) ≡ 1 mod p^n)])
Proof
Definitions occuring in Statement : 
p-adics: p-adics(p)
, 
eqmod: a ≡ b mod m
, 
prime: prime(a)
, 
exp: i^n
, 
int_upper: {i...}
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
not: ¬A
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
multiply: n * m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
nat_plus: ℕ+
, 
int_upper: {i...}
, 
le: A ≤ B
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
false: False
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
less_than': less_than'(a;b)
, 
true: True
, 
prop: ℙ
, 
less_than: a < b
, 
squash: ↓T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_stable: SqStable(P)
, 
guard: {T}
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
sq_type: SQType(T)
, 
p-adics: p-adics(p)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
assert: ↑b
, 
bnot: ¬bb
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
exp: i^n
, 
eqmod: a ≡ b mod m
, 
divides: b | a
, 
lelt: i ≤ j < k
, 
sq_exists: ∃x:A [B[x]]
Lemmas referenced : 
p-adic-property, 
decidable__lt, 
istype-false, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
istype-void, 
zero-add, 
le-add-cancel, 
less_than_wf, 
subtype_rel_sets, 
le_wf, 
sq_stable_from_decidable, 
prime_wf, 
decidable__prime, 
upper_subtype_nat, 
int_upper_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
subtype_base_sq, 
nat_plus_wf, 
set_subtype_base, 
int_subtype_base, 
exp-positive, 
exp1, 
p-adics_wf, 
lelt_wf, 
exp_wf2, 
false_wf, 
int_upper_wf, 
nat_wf, 
primrec-wf2, 
set_wf, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract_wf, 
coprime_wf, 
exp0_lemma, 
coprime_bezout_id, 
exists_wf, 
equal-wf-base, 
int_term_value_mul_lemma, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
itermMultiply_wf, 
itermAdd_wf, 
intformeq_wf, 
decidable__equal_int, 
assert-bnot, 
bool_subtype_base, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
assert_of_lt_int, 
eqtt_to_assert, 
bool_wf, 
lt_int_wf, 
primrec-unroll, 
coprime_prod, 
nat_plus_subtype_nat, 
coprime_iff_ndivides, 
divides_wf, 
nat_plus_properties, 
divisor_bound, 
subtype_rel_set, 
int_seg_properties, 
coprime_inversion, 
gcd-reduce-coprime, 
p-reduce_wf, 
eqmod_wf, 
eqmod_functionality_wrt_eqmod, 
multiply_functionality_wrt_eqmod, 
p-reduce-eqmod, 
eqmod_weakening, 
exp_wf_nat_plus, 
itermMinus_wf, 
int_term_value_minus_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
dependent_set_memberEquality_alt, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
productElimination, 
natural_numberEquality, 
hypothesisEquality, 
unionElimination, 
independent_pairFormation, 
voidElimination, 
independent_functionElimination, 
independent_isectElimination, 
isectElimination, 
sqequalRule, 
applyEquality, 
lambdaEquality_alt, 
isect_memberEquality_alt, 
universeIsType, 
intEquality, 
closedConclusion, 
imageMemberEquality, 
baseClosed, 
setIsType, 
imageElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
instantiate, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
functionIsType, 
equalityIsType4, 
lambdaEquality, 
dependent_pairFormation, 
dependent_set_memberEquality, 
voidEquality, 
isect_memberEquality, 
lambdaFormation, 
baseApply, 
promote_hyp, 
equalityElimination, 
inhabitedIsType, 
pointwiseFunctionality, 
applyLambdaEquality, 
equalityIsType1, 
dependent_set_memberFormation_alt, 
multiplyEquality, 
minusEquality
Latex:
\mforall{}p:\{p:\{2...\}|  prime(p)\}  .  \mforall{}a:\{a:p-adics(p)|  \mneg{}((a  1)  =  0)\}  .  \mforall{}n:\mBbbN{}\msupplus{}.
    (\mexists{}c:\mBbbN{}p\^{}n  [((c  *  (a  n))  \mequiv{}  1  mod  p\^{}n)])
Date html generated:
2019_10_15-AM-10_34_43
Last ObjectModification:
2018_10_16-AM-00_03_13
Theory : rings_1
Home
Index