Nuprl Lemma : p-mul-int-cancelation-2
∀[p:{p:{2...}| prime(p)} ]. ∀[k:ℕ]. ∀[a,b:p-adics(p)].
  (a = b ∈ p-adics(p)) supposing ((k(p) * a = k(p) * b ∈ p-adics(p)) and CoPrime(k,p))
Proof
Definitions occuring in Statement : 
p-int: k(p), 
p-mul: x * y, 
p-adics: p-adics(p), 
prime: prime(a), 
coprime: CoPrime(a,b), 
int_upper: {i...}, 
nat: ℕ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
set: {x:A| B[x]} , 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
prop: ℙ, 
int_upper: {i...}, 
nat_plus: ℕ+, 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
decidable: Dec(P), 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
not: ¬A, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
false: False, 
uiff: uiff(P;Q), 
subtype_rel: A ⊆r B, 
less_than': less_than'(a;b), 
true: True, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
p-units: p-units(p), 
top: Top, 
p-int: k(p), 
p-adics: p-adics(p), 
less_than: a < b, 
squash: ↓T, 
int_seg: {i..j-}, 
sq_type: SQType(T), 
guard: {T}, 
coprime: CoPrime(a,b), 
gcd_p: GCD(a;b;y), 
eqmod: a ≡ b mod m, 
divides: b | a, 
exists: ∃x:A. B[x], 
cand: A c∧ B, 
ge: i ≥ j , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
crng: CRng, 
rng: Rng, 
p-adic-ring: ℤ(p), 
ring_p: IsRing(T;plus;zero;neg;times;one), 
rng_car: |r|, 
pi1: fst(t), 
rng_plus: +r, 
pi2: snd(t), 
rng_zero: 0, 
rng_minus: -r, 
rng_times: *, 
rng_one: 1, 
monoid_p: IsMonoid(T;op;id), 
group_p: IsGroup(T;op;id;inv), 
bilinear: BiLinear(T;pl;tm), 
ident: Ident(T;op;id), 
assoc: Assoc(T;op), 
inverse: Inverse(T;op;id;inv), 
infix_ap: x f y, 
comm: Comm(T;op)
Lemmas referenced : 
p-inv_wf, 
equal_wf, 
p-adics_wf, 
p-mul_wf, 
decidable__lt, 
false_wf, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
le-add-cancel, 
less_than_wf, 
p-int_wf, 
coprime_wf, 
nat_wf, 
set_wf, 
int_upper_wf, 
prime_wf, 
not_wf, 
equal-wf-T-base, 
int_seg_wf, 
exp_wf2, 
le_wf, 
p-reduce-eqmod, 
p-reduce_wf, 
subtype_base_sq, 
int_subtype_base, 
nat_plus_wf, 
set_subtype_base, 
exp-positive, 
exp1, 
nat_properties, 
int_upper_properties, 
decidable__equal_int, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
itermMultiply_wf, 
itermMinus_wf, 
itermSubtract_wf, 
itermConstant_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_mul_lemma, 
int_term_value_minus_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
divides_reflexivity, 
divisor_bound, 
subtype_rel_set, 
upper_subtype_nat, 
intformle_wf, 
int_formula_prop_le_lemma, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
p-adic-ring_wf, 
crng_properties, 
rng_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
isectElimination, 
setElimination, 
rename, 
dependent_set_memberEquality, 
because_Cache, 
productElimination, 
natural_numberEquality, 
unionElimination, 
independent_pairFormation, 
lambdaFormation, 
voidElimination, 
independent_functionElimination, 
independent_isectElimination, 
sqequalRule, 
applyEquality, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality, 
voidEquality, 
intEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
cumulativity, 
dependent_pairFormation, 
minusEquality, 
approximateComputation, 
int_eqEquality, 
multiplyEquality, 
applyLambdaEquality, 
imageElimination, 
universeEquality
Latex:
\mforall{}[p:\{p:\{2...\}|  prime(p)\}  ].  \mforall{}[k:\mBbbN{}].  \mforall{}[a,b:p-adics(p)].
    (a  =  b)  supposing  ((k(p)  *  a  =  k(p)  *  b)  and  CoPrime(k,p))
Date html generated:
2018_05_21-PM-03_22_50
Last ObjectModification:
2018_05_19-AM-08_21_15
Theory : rings_1
Home
Index