Nuprl Lemma : cube+-

[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ].
  (cube-(I;i) cube+(I;i) 1(formal-cube(I).𝕀) ∈ formal-cube(I).𝕀 j⟶ formal-cube(I).𝕀)


Proof




Definitions occuring in Statement :  cube-: cube-(I;i) cube+: cube+(I;i) interval-type: 𝕀 cube-context-adjoin: X.A csm-id: 1(X) csm-comp: F cube_set_map: A ⟶ B formal-cube: formal-cube(I) add-name: I+i fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] not: ¬A set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] not: ¬A implies:  Q member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] prop: false: False ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] and: P ∧ Q formal-cube: formal-cube(I) cube-context-adjoin: X.A csm-id: 1(X) cube-: cube-(I;i) cube+: cube+(I;i) csm-comp: F compose: g sq_type: SQType(T) guard: {T} ifthenelse: if then else fi  btrue: tt interval-presheaf: 𝕀 names-hom: I ⟶ J names: names(I) bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff bnot: ¬bb assert: b
Lemmas referenced :  istype-nat fset-member_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf istype-int strong-subtype-self istype-void fset_wf cube-context-adjoin_wf formal-cube_wf1 interval-type_wf csm-comp_wf add-name_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le cube+_wf cube-_wf csm-id_wf cube-set-map-subtype I_cube_pair_redex_lemma interval-type-at I_cube_wf csm-equal subtype_base_sq bool_wf bool_subtype_base eq_int_eq_true_intro btrue_wf eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal assert-bnot neg_assert_of_eq_int names_wf int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt setIsType cut introduction extract_by_obid hypothesis sqequalRule functionIsType universeIsType sqequalHypSubstitution isectElimination thin applyEquality intEquality independent_isectElimination because_Cache lambdaEquality_alt natural_numberEquality hypothesisEquality instantiate dependent_set_memberEquality_alt setElimination rename dependent_functionElimination unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality Error :memTop,  independent_pairFormation voidElimination functionExtensionality productElimination cumulativity equalityTransitivity equalitySymmetry dependent_pairEquality_alt inhabitedIsType lambdaFormation_alt equalityElimination equalityIstype promote_hyp

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].    (cube-(I;i)  o  cube+(I;i)  =  1(formal-cube(I).\mBbbI{}))



Date html generated: 2020_05_20-PM-02_38_53
Last ObjectModification: 2020_04_04-PM-07_14_23

Theory : cubical!type!theory


Home Index