Nuprl Lemma : cube+-
∀[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ].
  (cube-(I;i) o cube+(I;i) = 1(formal-cube(I).𝕀) ∈ formal-cube(I).𝕀 j⟶ formal-cube(I).𝕀)
Proof
Definitions occuring in Statement : 
cube-: cube-(I;i)
, 
cube+: cube+(I;i)
, 
interval-type: 𝕀
, 
cube-context-adjoin: X.A
, 
csm-id: 1(X)
, 
csm-comp: G o F
, 
cube_set_map: A ⟶ B
, 
formal-cube: formal-cube(I)
, 
add-name: I+i
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
int-deq: IntDeq
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
set: {x:A| B[x]} 
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
false: False
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
formal-cube: formal-cube(I)
, 
cube-context-adjoin: X.A
, 
csm-id: 1(X)
, 
cube-: cube-(I;i)
, 
cube+: cube+(I;i)
, 
csm-comp: G o F
, 
compose: f o g
, 
sq_type: SQType(T)
, 
guard: {T}
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
interval-presheaf: 𝕀
, 
names-hom: I ⟶ J
, 
names: names(I)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
bnot: ¬bb
, 
assert: ↑b
Lemmas referenced : 
istype-nat, 
fset-member_wf, 
nat_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
istype-int, 
strong-subtype-self, 
istype-void, 
fset_wf, 
cube-context-adjoin_wf, 
formal-cube_wf1, 
interval-type_wf, 
csm-comp_wf, 
add-name_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
cube+_wf, 
cube-_wf, 
csm-id_wf, 
cube-set-map-subtype, 
I_cube_pair_redex_lemma, 
interval-type-at, 
I_cube_wf, 
csm-equal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
eq_int_eq_true_intro, 
btrue_wf, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
assert-bnot, 
neg_assert_of_eq_int, 
names_wf, 
int_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
setIsType, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
functionIsType, 
universeIsType, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
intEquality, 
independent_isectElimination, 
because_Cache, 
lambdaEquality_alt, 
natural_numberEquality, 
hypothesisEquality, 
instantiate, 
dependent_set_memberEquality_alt, 
setElimination, 
rename, 
dependent_functionElimination, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
voidElimination, 
functionExtensionality, 
productElimination, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairEquality_alt, 
inhabitedIsType, 
lambdaFormation_alt, 
equalityElimination, 
equalityIstype, 
promote_hyp
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].    (cube-(I;i)  o  cube+(I;i)  =  1(formal-cube(I).\mBbbI{}))
Date html generated:
2020_05_20-PM-02_38_53
Last ObjectModification:
2020_04_04-PM-07_14_23
Theory : cubical!type!theory
Home
Index