Nuprl Lemma : fillpath_wf
∀[Gamma:j⊢]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 ⊢ CompOp(A)]. ∀[x:{Gamma ⊢ _:(A)[1(𝕀)]}]. ∀[y:{Gamma ⊢ _:(A)[0(𝕀)]}].
∀[z:{Gamma.𝕀 ⊢ _:((A)[0(𝕀)])p}].
  (fillpath(Gamma;A;cA;x;y;z) ∈ {t:{Gamma.𝕀 ⊢ _:((A)[1(𝕀)])p}| 
                                 ((t)[0(𝕀)] = x ∈ {Gamma ⊢ _:(A)[1(𝕀)]})
                                 ∧ ((t)[1(𝕀)] = app(transport-fun(Gamma;A;cA); y) ∈ {Gamma ⊢ _:(A)[1(𝕀)]})} ) supposing 
     (((z)[0(𝕀)] = app(rev-transport-fun(Gamma;A;cA); x) ∈ {Gamma ⊢ _:(A)[0(𝕀)]}) and 
     ((z)[1(𝕀)] = y ∈ {Gamma ⊢ _:(A)[0(𝕀)]}))
Proof
Definitions occuring in Statement : 
fillpath: fillpath(Gamma;A;cA;x;y;z)
, 
rev-transport-fun: rev-transport-fun(Gamma;A;cA)
, 
transport-fun: transport-fun(Gamma;A;cA)
, 
composition-op: Gamma ⊢ CompOp(A)
, 
interval-1: 1(𝕀)
, 
interval-0: 0(𝕀)
, 
interval-type: 𝕀
, 
cubical-app: app(w; u)
, 
csm-id-adjoin: [u]
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
cubical-type: {X ⊢ _}
, 
interval-0: 0(𝕀)
, 
csm-id-adjoin: [u]
, 
csm-ap-type: (AF)s
, 
csm-id: 1(X)
, 
csm-adjoin: (s;u)
, 
csm-ap: (s)x
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
fillpath: fillpath(Gamma;A;cA;x;y;z)
, 
cc-snd: q
, 
interval-type: 𝕀
, 
cc-fst: p
, 
constant-cubical-type: (X)
, 
csm+: tau+
, 
csm-comp: G o F
, 
interval-1: 1(𝕀)
, 
pi2: snd(t)
, 
compose: f o g
, 
pi1: fst(t)
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
csm-ap-term: (t)s
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
, 
same-cubical-term: X ⊢ u=v:A
, 
case-endpoints: [r=0 ⊢→ a; r=1 ⊢→ b]
, 
respects-equality: respects-equality(S;T)
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
face-term-implies: Gamma ⊢ (phi 
⇒ psi)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
face-one: (i=1)
, 
cubical-term-at: u(a)
, 
face-zero: (i=0)
, 
or: P ∨ Q
, 
dm-neg: ¬(x)
, 
lattice-extend: lattice-extend(L;eq;eqL;f;ac)
, 
lattice-fset-join: \/(s)
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
fset-image: f"(s)
, 
f-union: f-union(domeq;rngeq;s;x.g[x])
, 
list_accum: list_accum, 
dM0: 0
, 
lattice-0: 0
, 
record-select: r.x
, 
dM: dM(I)
, 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq)
, 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
free-dist-lattice: free-dist-lattice(T; eq)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
btrue: tt
, 
empty-fset: {}
, 
nil: []
, 
it: ⋅
, 
opposite-lattice: opposite-lattice(L)
, 
lattice-1: 1
, 
fset-singleton: {x}
, 
cons: [a / b]
, 
dM1: 1
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
cubical-type-at: A(a)
, 
face-type: 𝔽
, 
I_cube: A(I)
, 
functor-ob: ob(F)
, 
face-presheaf: 𝔽
, 
lattice-point: Point(l)
, 
face_lattice: face_lattice(I)
, 
face-lattice: face-lattice(T;eq)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
DeMorgan-algebra: DeMorganAlgebra
, 
cubical-app: app(w; u)
Lemmas referenced : 
csm-ap-type_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
csm-id-adjoin_wf, 
interval-0_wf, 
cc-fst_wf_interval, 
interval-1_wf, 
csm_id_adjoin_fst_type_lemma, 
cubical-term-eqcd, 
csm-ap-term_wf, 
composition-term_wf, 
cubical_set_cumulativity-i-j, 
face-or_wf, 
face-zero_wf, 
cc-snd_wf, 
face-one_wf, 
csm+_wf_interval, 
csm-composition_wf, 
case-endpoints_wf, 
cubical-app_wf_fun, 
fill-type-down_wf, 
fill-type-up_wf, 
csm-interval-type, 
rev-transport-fun_wf, 
istype-cubical-term, 
composition-op_wf, 
cubical-type-cumulativity2, 
cubical-type_wf, 
cubical_set_wf, 
subset-cubical-term, 
context-subset_wf, 
face-type_wf, 
csm-face-type, 
context-adjoin-subset4, 
csm-context-subset-subtype2, 
cube_set_map_cumulativity-i-j, 
csm-face-zero, 
csm-face-one, 
csm-face-or, 
csm-case-endpoints, 
csm_id_adjoin_fst_term_lemma, 
term-p+0, 
term-p+1, 
squash_wf, 
true_wf, 
fill-type-down-0, 
cube_set_map_wf, 
fill-type-up-0, 
constrained-cubical-term-eqcd, 
fill-type-down-1, 
fill-type-up-1, 
context-subset-is-subset, 
case-term-same2, 
cubical-term-1-q1, 
cubical-term-0-q0, 
thin-context-subset, 
respects-equality-context-subset-term, 
context-subset-map, 
sub_cubical_set_transitivity, 
face-1_wf, 
context-1-subset, 
face-term-implies-subset, 
face-or-eq-1, 
equal_wf, 
istype-universe, 
lattice-point_wf, 
face_lattice_wf, 
dM-to-FL-dM1, 
subtype_rel_self, 
iff_weakening_equal, 
dM-to-FL_wf, 
dM0_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
lattice-meet_wf, 
lattice-join_wf, 
cubical-term-at_wf, 
lattice-1_wf, 
I_cube_wf, 
fset_wf, 
nat_wf, 
case-endpoints-0, 
csm-id_wf, 
subset-cubical-term2, 
sub_cubical_set_self, 
csm-ap-id-term, 
dm-neg_wf, 
names_wf, 
names-deq_wf, 
dM1_wf, 
subtype_rel-equal, 
dM_wf, 
free-DeMorgan-lattice_wf, 
DeMorgan-algebra-structure_wf, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
DeMorgan-algebra-axioms_wf, 
case-endpoints-1, 
transport-fun_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
instantiate, 
hypothesis, 
sqequalRule, 
dependent_functionElimination, 
Error :memTop, 
setElimination, 
rename, 
productElimination, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
applyEquality, 
lambdaEquality_alt, 
cumulativity, 
universeIsType, 
universeEquality, 
inhabitedIsType, 
hyp_replacement, 
axiomEquality, 
equalityIstype, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
independent_functionElimination, 
imageElimination, 
applyLambdaEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
lambdaFormation_alt, 
inlFormation_alt, 
productEquality, 
isectEquality, 
inrFormation_alt, 
productIsType
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:Gamma.\mBbbI{}  \mvdash{}  CompOp(A)].  \mforall{}[x:\{Gamma  \mvdash{}  \_:(A)[1(\mBbbI{})]\}].
\mforall{}[y:\{Gamma  \mvdash{}  \_:(A)[0(\mBbbI{})]\}].  \mforall{}[z:\{Gamma.\mBbbI{}  \mvdash{}  \_:((A)[0(\mBbbI{})])p\}].
    (fillpath(Gamma;A;cA;x;y;z)  \mmember{}  \{t:\{Gamma.\mBbbI{}  \mvdash{}  \_:((A)[1(\mBbbI{})])p\}| 
                                                                  ((t)[0(\mBbbI{})]  =  x)  \mwedge{}  ((t)[1(\mBbbI{})]  =  app(transport-fun(Gamma;A;cA);  y))\}  \000C)  supposing 
          (((z)[0(\mBbbI{})]  =  app(rev-transport-fun(Gamma;A;cA);  x))  and 
          ((z)[1(\mBbbI{})]  =  y))
Date html generated:
2020_05_20-PM-04_56_27
Last ObjectModification:
2020_05_02-PM-03_20_30
Theory : cubical!type!theory
Home
Index