Nuprl Lemma : fillpath_wf

[Gamma:j⊢]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 ⊢ CompOp(A)]. ∀[x:{Gamma ⊢ _:(A)[1(𝕀)]}]. ∀[y:{Gamma ⊢ _:(A)[0(𝕀)]}].
[z:{Gamma.𝕀 ⊢ _:((A)[0(𝕀)])p}].
  (fillpath(Gamma;A;cA;x;y;z) ∈ {t:{Gamma.𝕀 ⊢ _:((A)[1(𝕀)])p}| 
                                 ((t)[0(𝕀)] x ∈ {Gamma ⊢ _:(A)[1(𝕀)]})
                                 ∧ ((t)[1(𝕀)] app(transport-fun(Gamma;A;cA); y) ∈ {Gamma ⊢ _:(A)[1(𝕀)]})} supposing 
     (((z)[0(𝕀)] app(rev-transport-fun(Gamma;A;cA); x) ∈ {Gamma ⊢ _:(A)[0(𝕀)]}) and 
     ((z)[1(𝕀)] y ∈ {Gamma ⊢ _:(A)[0(𝕀)]}))


Proof




Definitions occuring in Statement :  fillpath: fillpath(Gamma;A;cA;x;y;z) rev-transport-fun: rev-transport-fun(Gamma;A;cA) transport-fun: transport-fun(Gamma;A;cA) composition-op: Gamma ⊢ CompOp(A) interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 cubical-app: app(w; u) csm-id-adjoin: [u] cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] cubical-type: {X ⊢ _} interval-0: 0(𝕀) csm-id-adjoin: [u] csm-ap-type: (AF)s csm-id: 1(X) csm-adjoin: (s;u) csm-ap: (s)x uimplies: supposing a subtype_rel: A ⊆B fillpath: fillpath(Gamma;A;cA;x;y;z) cc-snd: q interval-type: 𝕀 cc-fst: p constant-cubical-type: (X) csm+: tau+ csm-comp: F interval-1: 1(𝕀) pi2: snd(t) compose: g pi1: fst(t) guard: {T} implies:  Q csm-ap-term: (t)s squash: T prop: true: True constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} same-cubical-term: X ⊢ u=v:A case-endpoints: [r=0 ⊢→ a; r=1 ⊢→ b] respects-equality: respects-equality(S;T) and: P ∧ Q cand: c∧ B face-term-implies: Gamma ⊢ (phi  psi) iff: ⇐⇒ Q rev_implies:  Q face-one: (i=1) cubical-term-at: u(a) face-zero: (i=0) or: P ∨ Q dm-neg: ¬(x) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum dM0: 0 lattice-0: 0 record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) btrue: tt empty-fset: {} nil: [] it: opposite-lattice: opposite-lattice(L) lattice-1: 1 fset-singleton: {x} cons: [a b] dM1: 1 bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] so_apply: x[s] cubical-type-at: A(a) face-type: 𝔽 I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) DeMorgan-algebra: DeMorganAlgebra cubical-app: app(w; u)
Lemmas referenced :  csm-ap-type_wf cube-context-adjoin_wf interval-type_wf csm-id-adjoin_wf interval-0_wf cc-fst_wf_interval interval-1_wf csm_id_adjoin_fst_type_lemma cubical-term-eqcd csm-ap-term_wf composition-term_wf cubical_set_cumulativity-i-j face-or_wf face-zero_wf cc-snd_wf face-one_wf csm+_wf_interval csm-composition_wf case-endpoints_wf cubical-app_wf_fun fill-type-down_wf fill-type-up_wf csm-interval-type rev-transport-fun_wf istype-cubical-term composition-op_wf cubical-type-cumulativity2 cubical-type_wf cubical_set_wf subset-cubical-term context-subset_wf face-type_wf csm-face-type context-adjoin-subset4 csm-context-subset-subtype2 cube_set_map_cumulativity-i-j csm-face-zero csm-face-one csm-face-or csm-case-endpoints csm_id_adjoin_fst_term_lemma term-p+0 term-p+1 squash_wf true_wf fill-type-down-0 cube_set_map_wf fill-type-up-0 constrained-cubical-term-eqcd fill-type-down-1 fill-type-up-1 context-subset-is-subset case-term-same2 cubical-term-1-q1 cubical-term-0-q0 thin-context-subset respects-equality-context-subset-term context-subset-map sub_cubical_set_transitivity face-1_wf context-1-subset face-term-implies-subset face-or-eq-1 equal_wf istype-universe lattice-point_wf face_lattice_wf dM-to-FL-dM1 subtype_rel_self iff_weakening_equal dM-to-FL_wf dM0_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf cubical-term-at_wf lattice-1_wf I_cube_wf fset_wf nat_wf case-endpoints-0 csm-id_wf subset-cubical-term2 sub_cubical_set_self csm-ap-id-term dm-neg_wf names_wf names-deq_wf dM1_wf subtype_rel-equal dM_wf free-DeMorgan-lattice_wf DeMorgan-algebra-structure_wf DeMorgan-algebra-structure-subtype subtype_rel_transitivity DeMorgan-algebra-axioms_wf case-endpoints-1 transport-fun_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality instantiate hypothesis sqequalRule dependent_functionElimination Error :memTop,  setElimination rename productElimination because_Cache equalityTransitivity equalitySymmetry independent_isectElimination applyEquality lambdaEquality_alt cumulativity universeIsType universeEquality inhabitedIsType hyp_replacement axiomEquality equalityIstype isect_memberEquality_alt isectIsTypeImplies independent_functionElimination imageElimination applyLambdaEquality natural_numberEquality imageMemberEquality baseClosed dependent_set_memberEquality_alt independent_pairFormation lambdaFormation_alt inlFormation_alt productEquality isectEquality inrFormation_alt productIsType

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:Gamma.\mBbbI{}  \mvdash{}  CompOp(A)].  \mforall{}[x:\{Gamma  \mvdash{}  \_:(A)[1(\mBbbI{})]\}].
\mforall{}[y:\{Gamma  \mvdash{}  \_:(A)[0(\mBbbI{})]\}].  \mforall{}[z:\{Gamma.\mBbbI{}  \mvdash{}  \_:((A)[0(\mBbbI{})])p\}].
    (fillpath(Gamma;A;cA;x;y;z)  \mmember{}  \{t:\{Gamma.\mBbbI{}  \mvdash{}  \_:((A)[1(\mBbbI{})])p\}| 
                                                                  ((t)[0(\mBbbI{})]  =  x)  \mwedge{}  ((t)[1(\mBbbI{})]  =  app(transport-fun(Gamma;A;cA);  y))\}  \000C)  supposing 
          (((z)[0(\mBbbI{})]  =  app(rev-transport-fun(Gamma;A;cA);  x))  and 
          ((z)[1(\mBbbI{})]  =  y))



Date html generated: 2020_05_20-PM-04_56_27
Last ObjectModification: 2020_05_02-PM-03_20_30

Theory : cubical!type!theory


Home Index