Nuprl Lemma : pi-comp-property

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[B:{Gamma.A ⊢ _}]. ∀[cA:Gamma ⊢ CompOp(A)]. ∀[cB:Gamma.A ⊢ CompOp(B)]. ∀[I:fset(ℕ)].
[i:{i:ℕ| ¬i ∈ I} ]. ∀[rho:Gamma(I+i)]. ∀[phi:𝔽(I)]. ∀[mu:{I+i,s(phi) ⊢ _:(ΠB)<rho> iota}].
[lambda:cubical-path-0(Gamma;ΠB;I;i;rho;phi;mu)]. ∀[J:fset(ℕ)]. ∀[f:I,phi(J)].
  ((pi-comp(Gamma;A;B;cA;cB) rho phi mu lambda (i1)(rho) f) mu((i1) ⋅ f) ∈ ΠB(f((i1)(rho))))


Proof




Definitions occuring in Statement :  pi-comp: pi-comp(Gamma;A;B;cA;cB) composition-op: Gamma ⊢ CompOp(A) cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u) cubical-pi: ΠB cube-context-adjoin: X.A cubical-term-at: u(a) cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type-ap-morph: (u f) cubical-type-at: A(a) cubical-type: {X ⊢ _} subset-iota: iota cubical-subset: I,psi face-presheaf: 𝔽 csm-comp: F context-map: <rho> formal-cube: formal-cube(I) cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet nc-1: (i1) nc-s: s add-name: I+i nh-comp: g ⋅ f fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] not: ¬A set: {x:A| B[x]}  apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop: subtype_rel: A ⊆B cubical-pi: ΠB cubical-pi-family: cubical-pi-family(X;A;B;I;a) squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] pi-comp: pi-comp(Gamma;A;B;cA;cB) has-value: (a)↓ let: let composition-op: Gamma ⊢ CompOp(A) cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u) cubical-path-condition': cubical-path-condition'(Gamma;A;I;i;rho;phi;u;a1) I_cube: A(I) functor-ob: ob(F) pi1: fst(t) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt bdd-distributive-lattice: BoundedDistributiveLattice uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) name-morph-satisfies: (psi f) 1 compose: g bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) pi-comp-app: pi-comp-app(Gamma;A;I;i;rho;phi;mu;J;f;j;nu) cubical-term-at: u(a) canonical-section: canonical-section(Gamma;A;I;rho;a) subset-iota: iota csm-ap-term: (t)s cubical-app: app(w; u) csm-ap: (s)x subset-trans: subset-trans(I;J;f;x) cubical-term: {X ⊢ _:A} csm-comp: F csm-ap-type: (AF)s cubical-type-ap-morph: (u f) pi2: snd(t) context-map: <rho> functor-arrow: arrow(F) cube-set-restriction: f(s) names-hom: I ⟶ J formal-cube: formal-cube(I) cubical-type: {X ⊢ _} cc-snd: q cc-fst: p
Lemmas referenced :  cubical-subset-I_cube cubical-type-ap-morph_wf cubical-pi_wf cube-set-restriction_wf add-name_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le nc-1_wf pi-comp_wf3 cubical-type-cumulativity2 cube-context-adjoin_wf cubical_type_at_pair_lemma cubical_type_ap_morph_pair_lemma names-hom_wf istype-cubical-type-at cc-adjoin-cube_wf nh-comp_wf subtype_rel-equal cubical-type-at_wf cube-set-restriction-comp equal_wf I_cube_wf iff_weakening_equal cc-adjoin-cube-restriction subtype_rel_self cubical-subset_wf cubical-path-0_wf cubical-term_wf face-presheaf_wf2 nc-s_wf f-subset-add-name csm-ap-type_wf cubical_set_cumulativity-i-j cubical-type-cumulativity csm-comp_wf formal-cube_wf1 subset-iota_wf context-map_wf istype-nat fset-member_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self istype-void fset_wf composition-op_wf cubical-type_wf cubical_set_wf new-name_wf value-type-has-value not_wf set-value-type int-value-type nc-e'_wf pi-comp-nu_wf pi-comp-app_wf pi-comp-lambda_wf nh-id_wf lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf name-morph-satisfies-comp squash_wf true_wf istype-universe fl-morph-comp lattice-1_wf fl-morph_wf fl-morph-1 name-morph-satisfies_wf nh-id-left nc-e'-lemma1 cubical-type-ap-morph-id nc-r_wf trivial-member-add-name1 nc-r'_wf nc-r'-r pi-comp-nu-property nh-id-right nh-comp-assoc s-comp-nc-1 cubical-subset-restriction cube-set-restriction-id subtype_rel_weakening ext-eq_weakening csm-ap-restriction csm-ap_wf csm-ap-context-map subtype_rel_wf csm-cubical-pi csm-adjoin_wf cc-fst_wf cc-snd_wf csm-ap-type-at csm-adjoin-ap cc_snd_adjoin_cube_lemma csm_comp_fst_adjoin_cube_lemma implies-nh-comp-satisfies uiff_transitivity2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt sqequalHypSubstitution cut introduction extract_by_obid isectElimination thin Error :memTop,  hypothesis setElimination rename hypothesisEquality dependent_set_memberEquality_alt because_Cache dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality sqequalRule independent_pairFormation universeIsType voidElimination applyEquality instantiate applyLambdaEquality imageMemberEquality baseClosed imageElimination functionIsType equalityIstype equalityTransitivity equalitySymmetry productElimination universeEquality setIsType intEquality functionExtensionality inhabitedIsType lambdaFormation_alt callbyvalueReduce setEquality productEquality cumulativity isectEquality hyp_replacement functionEquality

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[B:\{Gamma.A  \mvdash{}  \_\}].  \mforall{}[cA:Gamma  \mvdash{}  CompOp(A)].
\mforall{}[cB:Gamma.A  \mvdash{}  CompOp(B)].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].  \mforall{}[rho:Gamma(I+i)].  \mforall{}[phi:\mBbbF{}(I)].
\mforall{}[mu:\{I+i,s(phi)  \mvdash{}  \_:(\mPi{}A  B)<rho>  o  iota\}].  \mforall{}[lambda:cubical-path-0(Gamma;\mPi{}A  B;I;i;rho;phi;mu)].
\mforall{}[J:fset(\mBbbN{})].  \mforall{}[f:I,phi(J)].
    ((pi-comp(Gamma;A;B;cA;cB)  I  i  rho  phi  mu  lambda  (i1)(rho)  f)  =  mu((i1)  \mcdot{}  f))



Date html generated: 2020_05_20-PM-04_02_30
Last ObjectModification: 2020_04_09-PM-11_13_48

Theory : cubical!type!theory


Home Index