Nuprl Lemma : pi-comp-property
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[B:{Gamma.A ⊢ _}]. ∀[cA:Gamma ⊢ CompOp(A)]. ∀[cB:Gamma.A ⊢ CompOp(B)]. ∀[I:fset(ℕ)].
∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[rho:Gamma(I+i)]. ∀[phi:𝔽(I)]. ∀[mu:{I+i,s(phi) ⊢ _:(ΠA B)<rho> o iota}].
∀[lambda:cubical-path-0(Gamma;ΠA B;I;i;rho;phi;mu)]. ∀[J:fset(ℕ)]. ∀[f:I,phi(J)].
  ((pi-comp(Gamma;A;B;cA;cB) I i rho phi mu lambda (i1)(rho) f) = mu((i1) ⋅ f) ∈ ΠA B(f((i1)(rho))))
Proof
Definitions occuring in Statement : 
pi-comp: pi-comp(Gamma;A;B;cA;cB), 
composition-op: Gamma ⊢ CompOp(A), 
cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u), 
cubical-pi: ΠA B, 
cube-context-adjoin: X.A, 
cubical-term-at: u(a), 
cubical-term: {X ⊢ _:A}, 
csm-ap-type: (AF)s, 
cubical-type-ap-morph: (u a f), 
cubical-type-at: A(a), 
cubical-type: {X ⊢ _}, 
subset-iota: iota, 
cubical-subset: I,psi, 
face-presheaf: 𝔽, 
csm-comp: G o F, 
context-map: <rho>, 
formal-cube: formal-cube(I), 
cube-set-restriction: f(s), 
I_cube: A(I), 
cubical_set: CubicalSet, 
nc-1: (i1), 
nc-s: s, 
add-name: I+i, 
nh-comp: g ⋅ f, 
fset-member: a ∈ s, 
fset: fset(T), 
int-deq: IntDeq, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
set: {x:A| B[x]} , 
apply: f a, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
ge: i ≥ j , 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
and: P ∧ Q, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
cubical-pi: ΠA B, 
cubical-pi-family: cubical-pi-family(X;A;B;I;a), 
squash: ↓T, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
pi-comp: pi-comp(Gamma;A;B;cA;cB), 
has-value: (a)↓, 
let: let, 
composition-op: Gamma ⊢ CompOp(A), 
cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u), 
cubical-path-condition': cubical-path-condition'(Gamma;A;I;i;rho;phi;u;a1), 
I_cube: A(I), 
functor-ob: ob(F), 
pi1: fst(t), 
face-presheaf: 𝔽, 
lattice-point: Point(l), 
record-select: r.x, 
face_lattice: face_lattice(I), 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
bdd-distributive-lattice: BoundedDistributiveLattice, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
name-morph-satisfies: (psi f) = 1, 
compose: f o g, 
bounded-lattice-hom: Hom(l1;l2), 
lattice-hom: Hom(l1;l2), 
pi-comp-app: pi-comp-app(Gamma;A;I;i;rho;phi;mu;J;f;j;nu), 
cubical-term-at: u(a), 
canonical-section: canonical-section(Gamma;A;I;rho;a), 
subset-iota: iota, 
csm-ap-term: (t)s, 
cubical-app: app(w; u), 
csm-ap: (s)x, 
subset-trans: subset-trans(I;J;f;x), 
cubical-term: {X ⊢ _:A}, 
csm-comp: G o F, 
csm-ap-type: (AF)s, 
cubical-type-ap-morph: (u a f), 
pi2: snd(t), 
context-map: <rho>, 
functor-arrow: arrow(F), 
cube-set-restriction: f(s), 
names-hom: I ⟶ J, 
formal-cube: formal-cube(I), 
cubical-type: {X ⊢ _}, 
cc-snd: q, 
cc-fst: p
Lemmas referenced : 
cubical-subset-I_cube, 
cubical-type-ap-morph_wf, 
cubical-pi_wf, 
cube-set-restriction_wf, 
add-name_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
nc-1_wf, 
pi-comp_wf3, 
cubical-type-cumulativity2, 
cube-context-adjoin_wf, 
cubical_type_at_pair_lemma, 
cubical_type_ap_morph_pair_lemma, 
names-hom_wf, 
istype-cubical-type-at, 
cc-adjoin-cube_wf, 
nh-comp_wf, 
subtype_rel-equal, 
cubical-type-at_wf, 
cube-set-restriction-comp, 
equal_wf, 
I_cube_wf, 
iff_weakening_equal, 
cc-adjoin-cube-restriction, 
subtype_rel_self, 
cubical-subset_wf, 
cubical-path-0_wf, 
cubical-term_wf, 
face-presheaf_wf2, 
nc-s_wf, 
f-subset-add-name, 
csm-ap-type_wf, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity, 
csm-comp_wf, 
formal-cube_wf1, 
subset-iota_wf, 
context-map_wf, 
istype-nat, 
fset-member_wf, 
nat_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self, 
istype-void, 
fset_wf, 
composition-op_wf, 
cubical-type_wf, 
cubical_set_wf, 
new-name_wf, 
value-type-has-value, 
not_wf, 
set-value-type, 
int-value-type, 
nc-e'_wf, 
pi-comp-nu_wf, 
pi-comp-app_wf, 
pi-comp-lambda_wf, 
nh-id_wf, 
lattice-point_wf, 
face_lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
lattice-meet_wf, 
lattice-join_wf, 
name-morph-satisfies-comp, 
squash_wf, 
true_wf, 
istype-universe, 
fl-morph-comp, 
lattice-1_wf, 
fl-morph_wf, 
fl-morph-1, 
name-morph-satisfies_wf, 
nh-id-left, 
nc-e'-lemma1, 
cubical-type-ap-morph-id, 
nc-r_wf, 
trivial-member-add-name1, 
nc-r'_wf, 
nc-r'-r, 
pi-comp-nu-property, 
nh-id-right, 
nh-comp-assoc, 
s-comp-nc-1, 
cubical-subset-restriction, 
cube-set-restriction-id, 
subtype_rel_weakening, 
ext-eq_weakening, 
csm-ap-restriction, 
csm-ap_wf, 
csm-ap-context-map, 
subtype_rel_wf, 
csm-cubical-pi, 
csm-adjoin_wf, 
cc-fst_wf, 
cc-snd_wf, 
csm-ap-type-at, 
csm-adjoin-ap, 
cc_snd_adjoin_cube_lemma, 
csm_comp_fst_adjoin_cube_lemma, 
implies-nh-comp-satisfies, 
uiff_transitivity2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
sqequalHypSubstitution, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
Error :memTop, 
hypothesis, 
setElimination, 
rename, 
hypothesisEquality, 
dependent_set_memberEquality_alt, 
because_Cache, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
voidElimination, 
applyEquality, 
instantiate, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
functionIsType, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
universeEquality, 
setIsType, 
intEquality, 
functionExtensionality, 
inhabitedIsType, 
lambdaFormation_alt, 
callbyvalueReduce, 
setEquality, 
productEquality, 
cumulativity, 
isectEquality, 
hyp_replacement, 
functionEquality
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[B:\{Gamma.A  \mvdash{}  \_\}].  \mforall{}[cA:Gamma  \mvdash{}  CompOp(A)].
\mforall{}[cB:Gamma.A  \mvdash{}  CompOp(B)].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].  \mforall{}[rho:Gamma(I+i)].  \mforall{}[phi:\mBbbF{}(I)].
\mforall{}[mu:\{I+i,s(phi)  \mvdash{}  \_:(\mPi{}A  B)<rho>  o  iota\}].  \mforall{}[lambda:cubical-path-0(Gamma;\mPi{}A  B;I;i;rho;phi;mu)].
\mforall{}[J:fset(\mBbbN{})].  \mforall{}[f:I,phi(J)].
    ((pi-comp(Gamma;A;B;cA;cB)  I  i  rho  phi  mu  lambda  (i1)(rho)  f)  =  mu((i1)  \mcdot{}  f))
Date html generated:
2020_05_20-PM-04_02_30
Last ObjectModification:
2020_04_09-PM-11_13_48
Theory : cubical!type!theory
Home
Index