Nuprl Lemma : pi-comp_wf3

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[B:{Gamma.A ⊢ _}]. ∀[cA:Gamma ⊢ CompOp(A)]. ∀[cB:Gamma.A ⊢ CompOp(B)].
  (pi-comp(Gamma;A;B;cA;cB) ∈ I:fset(ℕ)
   ⟶ i:{i:ℕ| ¬i ∈ I} 
   ⟶ rho:Gamma(I+i)
   ⟶ phi:𝔽(I)
   ⟶ mu:{I+i,s(phi) ⊢ _:(ΠB)<rho> iota}
   ⟶ lambda:cubical-path-0(Gamma;ΠB;I;i;rho;phi;mu)
   ⟶ ΠB((i1)(rho)))


Proof




Definitions occuring in Statement :  pi-comp: pi-comp(Gamma;A;B;cA;cB) composition-op: Gamma ⊢ CompOp(A) cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u) cubical-pi: ΠB cube-context-adjoin: X.A cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type-at: A(a) cubical-type: {X ⊢ _} subset-iota: iota cubical-subset: I,psi face-presheaf: 𝔽 csm-comp: F context-map: <rho> formal-cube: formal-cube(I) cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet nc-1: (i1) nc-s: s add-name: I+i fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] not: ¬A member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-pi: ΠB all: x:A. B[x] cubical-pi-family: cubical-pi-family(X;A;B;I;a) nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop: subtype_rel: A ⊆B squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] pi-comp: pi-comp(Gamma;A;B;cA;cB) has-value: (a)↓ let: let composition-op: Gamma ⊢ CompOp(A) composition-uniformity: composition-uniformity(Gamma;A;comp) cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u) nat-deq: NatDeq int-deq: IntDeq cc-adjoin-cube: (v;u) cube-context-adjoin: X.A context-map: <rho> subset-iota: iota csm-comp: F subset-trans: subset-trans(I;J;f;x) compose: g pi1: fst(t) pi2: snd(t) pi-comp-app: pi-comp-app(Gamma;A;I;i;rho;phi;mu;J;f;j;nu) csm-ap-term: (t)s csm-ap: (s)x canonical-section: canonical-section(Gamma;A;I;rho;a) cubical-app: app(w; u) cubical-term: {X ⊢ _:A} bdd-distributive-lattice: BoundedDistributiveLattice I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) functor-arrow: arrow(F) cube-set-restriction: f(s) csm-ap-type: (AF)s cubical-type-at: A(a) label: ...$L... t cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u) pi-comp-lambda: pi-comp-lambda(Gamma;A;I;i;rho;lambda;J;f;j;nu)
Lemmas referenced :  pi-comp_wf2 cubical_type_at_pair_lemma istype-cubical-type-at cube-set-restriction_wf add-name_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le nc-1_wf names-hom_wf cube-context-adjoin_wf cc-adjoin-cube_wf cubical-type-ap-morph_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j nh-comp_wf subtype_rel-equal cubical-type-at_wf cube-set-restriction-comp equal_wf squash_wf true_wf istype-universe I_cube_wf subtype_rel_self iff_weakening_equal cc-adjoin-cube-restriction cubical-path-0_wf cubical-pi_wf cubical-term_wf cubical-subset_wf face-presheaf_wf2 nc-s_wf f-subset-add-name csm-ap-type_wf csm-comp_wf formal-cube_wf1 subset-iota_wf context-map_wf nat_wf not_wf fset-member_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self fset_wf composition-op_wf cubical-type_wf cubical_set_wf pi-comp-nu-property istype-void istype-nat new-name_wf value-type-has-value set-value-type int-value-type nc-e'_wf pi-comp-nu_wf nc-r_wf trivial-member-add-name1 nc-r'_wf nc-r'-r pi-comp-app_wf pi-comp-lambda_wf nh-comp-assoc nc-e'-lemma1 cubical-type-ap-morph-comp subtype_rel_set cubical-path-condition'_wf pi-comp-nu-uniformity nc-e'-lemma6 nat-deq_wf cubical-term-equal2 fl-morph_wf fl-morph-restriction nc-e'-lemma3 cube_set_map_wf subset-trans_wf csm-ap-comp-type csm-equal2 I_cube_pair_redex_lemma arrow_pair_lemma cubical-subset-I_cube cubical-type-ap-morph-comp-eq-general csm-ap-term_wf name-morph-satisfies_wf lattice-point_wf face_lattice_wf bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf name-morph-satisfies-comp csm-ap-type-at csm-ap-csm-comp cube-set-restriction-id nh-id_wf csm-ap-restriction cubical-path-condition_wf nc-0_wf s-comp-if-lemma1 r-comp-nc-0 nc-r'-nc-1 nc-e'-lemma2 subtype_rel_wf cubical-type-ap-morph-comp-eq
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality functionExtensionality sqequalRule dependent_functionElimination Error :memTop,  dependent_set_memberEquality_alt applyEquality lambdaFormation_alt setElimination rename because_Cache natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality independent_pairFormation universeIsType voidElimination inhabitedIsType functionIsType equalityIstype instantiate imageElimination imageMemberEquality baseClosed equalityTransitivity equalitySymmetry universeEquality productElimination setEquality intEquality callbyvalueReduce hyp_replacement cumulativity dependent_pairEquality_alt applyLambdaEquality productEquality isectEquality productIsType

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[B:\{Gamma.A  \mvdash{}  \_\}].  \mforall{}[cA:Gamma  \mvdash{}  CompOp(A)].
\mforall{}[cB:Gamma.A  \mvdash{}  CompOp(B)].
    (pi-comp(Gamma;A;B;cA;cB)  \mmember{}  I:fset(\mBbbN{})
      {}\mrightarrow{}  i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\} 
      {}\mrightarrow{}  rho:Gamma(I+i)
      {}\mrightarrow{}  phi:\mBbbF{}(I)
      {}\mrightarrow{}  mu:\{I+i,s(phi)  \mvdash{}  \_:(\mPi{}A  B)<rho>  o  iota\}
      {}\mrightarrow{}  lambda:cubical-path-0(Gamma;\mPi{}A  B;I;i;rho;phi;mu)
      {}\mrightarrow{}  \mPi{}A  B((i1)(rho)))



Date html generated: 2020_05_20-PM-04_01_43
Last ObjectModification: 2020_04_21-AM-09_41_21

Theory : cubical!type!theory


Home Index