Nuprl Lemma : pi-comp-nu-uniformity
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[cA:Gamma ⊢ CompOp(A)]. ∀[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[rho:Gamma(I+i)].
∀[J,K:fset(ℕ)]. ∀[f:J ⟶ I]. ∀[g:K ⟶ J]. ∀[u:A(f((i1)(rho)))]. ∀[j:{j:ℕ| ¬j ∈ J} ]. ∀[k:{k:ℕ| ¬k ∈ K} ].
  ((pi-comp-nu(Gamma;A;cA;I;i;rho;J;f;u;j) f,i=j(rho) g,j=k)
  = pi-comp-nu(Gamma;A;cA;I;i;rho;K;f ⋅ g;(u f((i1)(rho)) g);k)
  ∈ A(f ⋅ g,i=k(rho)))
Proof
Definitions occuring in Statement : 
pi-comp-nu: pi-comp-nu(Gamma;A;cA;I;i;rho;J;f;u1;j), 
composition-op: Gamma ⊢ CompOp(A), 
cubical-type-ap-morph: (u a f), 
cubical-type-at: A(a), 
cubical-type: {X ⊢ _}, 
cube-set-restriction: f(s), 
I_cube: A(I), 
cubical_set: CubicalSet, 
nc-e': g,i=j, 
nc-1: (i1), 
add-name: I+i, 
nh-comp: g ⋅ f, 
names-hom: I ⟶ J, 
fset-member: a ∈ s, 
fset: fset(T), 
int-deq: IntDeq, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
set: {x:A| B[x]} , 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
pi-comp-nu: pi-comp-nu(Gamma;A;cA;I;i;rho;J;f;u1;j), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
filling-op: filling-op(Gamma;A), 
let: let, 
nat: ℕ, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
and: P ∧ Q, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
squash: ↓T, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
true: True, 
cube-set-restriction: f(s), 
pi2: snd(t), 
face-presheaf: 𝔽, 
fl-morph: <f>, 
fl-lift: fl-lift(T;eq;L;eqL;f0;f1), 
face-lattice-property, 
free-dist-lattice-with-constraints-property, 
lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac), 
lattice-extend: lattice-extend(L;eq;eqL;f;ac), 
lattice-fset-join: \/(s), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
fset-image: f"(s), 
f-union: f-union(domeq;rngeq;s;x.g[x]), 
list_accum: list_accum, 
lattice-0: 0, 
record-select: r.x, 
face_lattice: face_lattice(I), 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
empty-fset: {}, 
nil: [], 
it: ⋅, 
bdd-distributive-lattice: BoundedDistributiveLattice, 
filling-uniformity: filling-uniformity(Gamma;A;fill), 
lattice-point: Point(l), 
I_cube: A(I), 
functor-ob: ob(F), 
pi1: fst(t), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
int-deq: IntDeq, 
nat-deq: NatDeq, 
cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u)
Lemmas referenced : 
fill_from_comp_wf, 
member-cubical-path-0-0, 
cube-set-restriction_wf, 
add-name_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
nc-r'_wf, 
subtype_rel-equal, 
cubical-type-at_wf, 
nc-1_wf, 
nc-0_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
I_cube_wf, 
cube-set-restriction-comp, 
subtype_rel_self, 
iff_weakening_equal, 
nh-comp_wf, 
nc-r'-nc-0, 
lattice-0_wf, 
face_lattice_wf, 
trivial-section_wf, 
face-presheaf_wf2, 
nc-s_wf, 
f-subset-add-name, 
istype-nat, 
fset-member_wf, 
nat_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self, 
istype-void, 
istype-cubical-type-at, 
names-hom_wf, 
fset_wf, 
composition-op_wf, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
cubical-type_wf, 
cubical_set_wf, 
nc-r_wf, 
trivial-member-add-name1, 
nc-e'_wf, 
cubical-type-ap-morph_wf, 
nc-r'-r, 
nat-deq_wf, 
nc-r'-to-e'2, 
nh-comp-assoc, 
nc-e'-lemma6, 
cubical-type-ap-morph-comp, 
nc-r'-to-e', 
nc-r-e'-r, 
nc-e'-r, 
cubical-path-condition-0, 
cubical-path-condition_wf, 
empty-cubical-subset-term, 
face-lattice-property, 
free-dist-lattice-with-constraints-property
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
inhabitedIsType, 
lambdaFormation_alt, 
rename, 
setElimination, 
sqequalRule, 
because_Cache, 
dependent_set_memberEquality_alt, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
universeIsType, 
voidElimination, 
applyEquality, 
imageElimination, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
equalityIstype, 
setIsType, 
functionIsType, 
intEquality, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
applyLambdaEquality, 
hyp_replacement
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[cA:Gamma  \mvdash{}  CompOp(A)].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].
\mforall{}[rho:Gamma(I+i)].  \mforall{}[J,K:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].  \mforall{}[g:K  {}\mrightarrow{}  J].  \mforall{}[u:A(f((i1)(rho)))].
\mforall{}[j:\{j:\mBbbN{}|  \mneg{}j  \mmember{}  J\}  ].  \mforall{}[k:\{k:\mBbbN{}|  \mneg{}k  \mmember{}  K\}  ].
    ((pi-comp-nu(Gamma;A;cA;I;i;rho;J;f;u;j)  f,i=j(rho)  g,j=k)
    =  pi-comp-nu(Gamma;A;cA;I;i;rho;K;f  \mcdot{}  g;(u  f((i1)(rho))  g);k))
Date html generated:
2020_05_20-PM-03_58_36
Last ObjectModification:
2020_04_09-PM-07_08_13
Theory : cubical!type!theory
Home
Index