Nuprl Lemma : rat-cube-diameter-bound

[k:ℕ]. ∀[c:ℚCube(k)]. ∀[x,y:ℝ^k].
  (mdist(rn-prod-metric(k);x;y) ≤ rat-cube-diameter(k;c)) supposing (in-rat-cube(k;y;c) and in-rat-cube(k;x;c))


Proof




Definitions occuring in Statement :  rat-cube-diameter: rat-cube-diameter(k;c) in-rat-cube: in-rat-cube(k;p;c) rn-prod-metric: rn-prod-metric(n) real-vec: ^n mdist: mdist(d;x;y) rleq: x ≤ y nat: uimplies: supposing a uall: [x:A]. B[x] rational-cube: Cube(k)
Definitions unfolded in proof :  rge: x ≥ y cand: c∧ B rev_implies:  Q iff: ⇐⇒ Q req_int_terms: t1 ≡ t2 guard: {T} rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) rmetric: rmetric() in-rat-cube: in-rat-cube(k;p;c) rnonneg: rnonneg(x) rleq: x ≤ y pointwise-rleq: x[k] ≤ y[k] for k ∈ [n,m] pi1: fst(t) pi2: snd(t) rational-interval: Interval rational-cube: Cube(k) so_apply: x[s] prop: top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A or: P ∨ Q decidable: Dec(P) all: x:A. B[x] ge: i ≥  squash: T less_than: a < b le: A ≤ B and: P ∧ Q lelt: i ≤ j < k int_seg: {i..j-} real-vec: ^n metric: metric(X) subtype_rel: A ⊆B so_lambda: λ2x.t[x] nat: prod-metric: prod-metric(k;d) mdist: mdist(d;x;y) rn-prod-metric: rn-prod-metric(n) rat-cube-diameter: rat-cube-diameter(k;c) uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  radd_functionality_wrt_rleq rleq-implies-rleq rleq_weakening_equal rsub_functionality_wrt_rleq rleq_functionality_wrt_implies rleq_weakening rabs-difference-bound-rleq real_term_value_const_lemma real_term_value_var_lemma real_term_value_add_lemma real_term_value_sub_lemma real_polynomial_null req-iff-rsub-is-0 rmax-req req_weakening rleq_functionality rleq_transitivity radd_wf radd-preserves-rleq rabs_wf rleq_wf istype-nat rational-cube_wf real-vec_wf in-rat-cube_wf le_witness_for_triv rat2real_wf rsub_wf int-to-real_wf rmax_wf int_seg_wf istype-less_than istype-le int_term_value_subtract_lemma int_term_value_add_lemma int_formula_prop_less_lemma itermSubtract_wf itermAdd_wf intformless_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma istype-int itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties int_seg_properties rmetric_wf subtract_wf rsum_functionality_wrt_rleq
Rules used in proof :  isectIsTypeImplies functionIsTypeImplies equalityIstype lambdaFormation_alt addEquality because_Cache productIsType universeIsType voidElimination isect_memberEquality_alt int_eqEquality dependent_pairFormation_alt independent_functionElimination approximateComputation independent_isectElimination unionElimination dependent_functionElimination independent_pairFormation imageElimination productElimination dependent_set_memberEquality_alt equalitySymmetry equalityTransitivity inhabitedIsType applyEquality lambdaEquality_alt hypothesis hypothesisEquality rename setElimination natural_numberEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c:\mBbbQ{}Cube(k)].  \mforall{}[x,y:\mBbbR{}\^{}k].
    (mdist(rn-prod-metric(k);x;y)  \mleq{}  rat-cube-diameter(k;c))  supposing 
          (in-rat-cube(k;y;c)  and 
          in-rat-cube(k;x;c))



Date html generated: 2019_10_31-AM-06_03_19
Last ObjectModification: 2019_10_31-AM-00_15_36

Theory : real!vectors


Home Index