Nuprl Lemma : not-m-not-reg-3regular
∀[X:Type]. ∀[d:metric(X)]. ∀[s:ℕ ⟶ X]. ∀[b:ℕ].
  ((∀n:ℕb. m-not-reg(d;s;n) = ff) 
⇒ (∀n,m:ℕb.  (mdist(d;s n;s m) ≤ ((r(3)/r(n + 1)) + (r(3)/r(m + 1))))))
Proof
Definitions occuring in Statement : 
m-not-reg: m-not-reg(d;s;n)
, 
mdist: mdist(d;x;y)
, 
metric: metric(X)
, 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
radd: a + b
, 
int-to-real: r(n)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
bfalse: ff
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
int_seg: {i..j-}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
m-not-reg: m-not-reg(d;s;n)
, 
nat: ℕ
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
less_than: a < b
, 
squash: ↓T
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
less_than': less_than'(a;b)
, 
isl: isl(x)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rneq: x ≠ y
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
rge: x ≥ y
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
uiff: uiff(P;Q)
, 
nat_plus: ℕ+
, 
req_int_terms: t1 ≡ t2
Lemmas referenced : 
decidable__lt, 
m-reg-test_wf, 
int_seg_properties, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
subtype_rel_function, 
nat_wf, 
int_seg_wf, 
int_seg_subtype_nat, 
istype-false, 
subtype_rel_self, 
btrue_neq_bfalse, 
rleq_functionality_wrt_implies, 
mdist_wf, 
radd_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
intformless_wf, 
itermAdd_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
rless_wf, 
rleq_weakening_rless, 
istype-less_than, 
rleq_weakening_equal, 
rleq_weakening, 
subtype_base_sq, 
set_subtype_base, 
lelt_wf, 
int_subtype_base, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
bool_wf, 
m-not-reg_wf, 
bfalse_wf, 
le_witness_for_triv, 
istype-nat, 
metric_wf, 
istype-universe, 
itermSubtract_wf, 
req-iff-rsub-is-0, 
radd-non-neg, 
rleq-int-fractions2, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
rleq_functionality, 
mdist-symm, 
req_weakening, 
mdist-same
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
unionElimination, 
isectElimination, 
dependent_set_memberEquality_alt, 
productElimination, 
imageElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
applyEquality, 
because_Cache, 
inhabitedIsType, 
equalityIstype, 
baseClosed, 
sqequalBase, 
equalitySymmetry, 
closedConclusion, 
addEquality, 
inrFormation_alt, 
productIsType, 
equalityTransitivity, 
instantiate, 
cumulativity, 
intEquality, 
functionIsType, 
functionIsTypeImplies, 
isectIsTypeImplies, 
universeEquality, 
multiplyEquality
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[s:\mBbbN{}  {}\mrightarrow{}  X].  \mforall{}[b:\mBbbN{}].
    ((\mforall{}n:\mBbbN{}b.  m-not-reg(d;s;n)  =  ff)
    {}\mRightarrow{}  (\mforall{}n,m:\mBbbN{}b.    (mdist(d;s  n;s  m)  \mleq{}  ((r(3)/r(n  +  1))  +  (r(3)/r(m  +  1))))))
Date html generated:
2019_10_30-AM-07_01_12
Last ObjectModification:
2019_10_09-AM-09_03_26
Theory : reals
Home
Index