Nuprl Lemma : not-m-not-reg-3regular

[X:Type]. ∀[d:metric(X)]. ∀[s:ℕ ⟶ X]. ∀[b:ℕ].
  ((∀n:ℕb. m-not-reg(d;s;n) ff)  (∀n,m:ℕb.  (mdist(d;s n;s m) ≤ ((r(3)/r(n 1)) (r(3)/r(m 1))))))


Proof




Definitions occuring in Statement :  m-not-reg: m-not-reg(d;s;n) mdist: mdist(d;x;y) metric: metric(X) rdiv: (x/y) rleq: x ≤ y radd: b int-to-real: r(n) int_seg: {i..j-} nat: bfalse: ff bool: 𝔹 uall: [x:A]. B[x] all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] add: m natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] int_seg: {i..j-} decidable: Dec(P) or: P ∨ Q m-not-reg: m-not-reg(d;s;n) nat: lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b squash: T ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: subtype_rel: A ⊆B less_than': less_than'(a;b) isl: isl(x) rev_uimplies: rev_uimplies(P;Q) rneq: x ≠ y guard: {T} iff: ⇐⇒ Q rev_implies:  Q rge: x ≥ y so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) rleq: x ≤ y rnonneg: rnonneg(x) uiff: uiff(P;Q) nat_plus: + req_int_terms: t1 ≡ t2
Lemmas referenced :  decidable__lt m-reg-test_wf int_seg_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le subtype_rel_function nat_wf int_seg_wf int_seg_subtype_nat istype-false subtype_rel_self btrue_neq_bfalse rleq_functionality_wrt_implies mdist_wf radd_wf rdiv_wf int-to-real_wf rless-int intformless_wf itermAdd_wf int_formula_prop_less_lemma int_term_value_add_lemma rless_wf rleq_weakening_rless istype-less_than rleq_weakening_equal rleq_weakening subtype_base_sq set_subtype_base lelt_wf int_subtype_base decidable__equal_int intformeq_wf int_formula_prop_eq_lemma bool_wf m-not-reg_wf bfalse_wf le_witness_for_triv istype-nat metric_wf istype-universe itermSubtract_wf req-iff-rsub-is-0 radd-non-neg rleq-int-fractions2 itermMultiply_wf int_term_value_mul_lemma real_polynomial_null real_term_value_sub_lemma real_term_value_add_lemma real_term_value_var_lemma real_term_value_const_lemma rleq_functionality mdist-symm req_weakening mdist-same
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt extract_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality hypothesis unionElimination isectElimination dependent_set_memberEquality_alt productElimination imageElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType applyEquality because_Cache inhabitedIsType equalityIstype baseClosed sqequalBase equalitySymmetry closedConclusion addEquality inrFormation_alt productIsType equalityTransitivity instantiate cumulativity intEquality functionIsType functionIsTypeImplies isectIsTypeImplies universeEquality multiplyEquality

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[s:\mBbbN{}  {}\mrightarrow{}  X].  \mforall{}[b:\mBbbN{}].
    ((\mforall{}n:\mBbbN{}b.  m-not-reg(d;s;n)  =  ff)
    {}\mRightarrow{}  (\mforall{}n,m:\mBbbN{}b.    (mdist(d;s  n;s  m)  \mleq{}  ((r(3)/r(n  +  1))  +  (r(3)/r(m  +  1))))))



Date html generated: 2019_10_30-AM-07_01_12
Last ObjectModification: 2019_10_09-AM-09_03_26

Theory : reals


Home Index