Nuprl Lemma : radd-list_functionality_wrt_rleq

[L1,L2:ℝ List].  radd-list(L1) ≤ radd-list(L2) supposing (||L1|| ||L2|| ∈ ℤ) ∧ (∀i:ℕ||L1||. (L1[i] ≤ L2[i]))


Proof




Definitions occuring in Statement :  rleq: x ≤ y radd-list: radd-list(L) real: select: L[n] length: ||as|| list: List int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] and: P ∧ Q natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] uimplies: supposing a and: P ∧ Q prop: int_seg: {i..j-} guard: {T} lelt: i ≤ j < k all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top so_apply: x[s] subtype_rel: A ⊆B select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B real: ge: i ≥  uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) cand: c∧ B subtract: m less_than: a < b true: True squash: T sq_type: SQType(T) iff: ⇐⇒ Q rge: x ≥ y less_than': less_than'(a;b) nat_plus: + cons: [a b]
Lemmas referenced :  list_induction real_wf uall_wf list_wf isect_wf equal_wf length_wf all_wf int_seg_wf rleq_wf select_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma intformeq_wf int_formula_prop_eq_lemma radd-list_wf-bag list-subtype-bag subtype_rel_self equal-wf-base-T nil_wf length_of_nil_lemma stuck-spread base_wf radd_list_nil_lemma rleq_weakening_equal int-to-real_wf less_than'_wf rsub_wf nat_plus_wf equal-wf-base length_of_cons_lemma non_neg_length itermAdd_wf int_term_value_add_lemma cons_wf add-is-int-iff false_wf equal-wf-T-base rleq_functionality radd_wf radd-list-cons decidable__equal_int add-member-int_seg2 subtract_wf itermSubtract_wf int_term_value_subtract_lemma lelt_wf add-associates add-swap add-commutes zero-add squash_wf le_wf less_than_wf add-subtract-cancel subtype_base_sq int_subtype_base true_wf select_cons_tl iff_weakening_equal rleq_functionality_wrt_implies radd_functionality_wrt_rleq add_nat_plus length_wf_nat nat_plus_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesis sqequalRule lambdaEquality productEquality intEquality because_Cache hypothesisEquality natural_numberEquality setElimination rename independent_isectElimination equalityTransitivity equalitySymmetry productElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll applyEquality independent_functionElimination baseClosed lambdaFormation independent_pairEquality minusEquality axiomEquality pointwiseFunctionality promote_hyp baseApply closedConclusion addEquality dependent_set_memberEquality hyp_replacement imageElimination cumulativity universeEquality imageMemberEquality instantiate applyLambdaEquality

Latex:
\mforall{}[L1,L2:\mBbbR{}  List].
    radd-list(L1)  \mleq{}  radd-list(L2)  supposing  (||L1||  =  ||L2||)  \mwedge{}  (\mforall{}i:\mBbbN{}||L1||.  (L1[i]  \mleq{}  L2[i]))



Date html generated: 2017_10_03-AM-08_26_13
Last ObjectModification: 2017_07_28-AM-07_24_12

Theory : reals


Home Index