Nuprl Lemma : square-rless-1-iff

x:ℝ(x^2 < r1 ⇐⇒ |x| < r1)


Proof




Definitions occuring in Statement :  rless: x < y rabs: |x| rnexp: x^k1 int-to-real: r(n) real: all: x:A. B[x] iff: ⇐⇒ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A rev_implies:  Q uimplies: supposing a itermConstant: "const" req_int_terms: t1 ≡ t2 top: Top uiff: uiff(P;Q) or: P ∨ Q rsub: y cand: c∧ B less_than: a < b squash: T true: True guard: {T} nat_plus: +
Lemmas referenced :  rless_wf rnexp_wf false_wf le_wf int-to-real_wf rabs_wf real_wf rmul_wf radd-preserves-rless rminus_wf rless_functionality radd_wf real_term_polynomial itermSubtract_wf itermAdd_wf itermMinus_wf itermMultiply_wf itermVar_wf itermConstant_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_add_lemma real_term_value_minus_lemma real_term_value_mul_lemma real_term_value_var_lemma req-iff-rsub-is-0 rnexp2 req_weakening rsub_wf rabs-rless-iff rmul-is-positive equal_wf radd-rminus-both radd-ac radd-zero-both radd_comm rmul-zero-both radd-int rmul_functionality rmul-distrib2 rmul-identity1 req_inversion radd-assoc req_transitivity rminus-as-rmul radd_functionality rless-int rless_transitivity2 rleq_weakening_rless rless_irreflexivity exp-one true_wf squash_wf rnexp-int rabs-rnexp exp_wf2 less_than_wf zero-rleq-rabs rnexp-rless rleq-rmax rabs-as-rmax
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin dependent_set_memberEquality natural_numberEquality sqequalRule hypothesis hypothesisEquality because_Cache dependent_functionElimination productElimination independent_functionElimination independent_isectElimination computeAll lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality unionElimination equalitySymmetry equalityTransitivity productEquality promote_hyp addEquality minusEquality imageMemberEquality baseClosed imageElimination applyEquality

Latex:
\mforall{}x:\mBbbR{}.  (x\^{}2  <  r1  \mLeftarrow{}{}\mRightarrow{}  |x|  <  r1)



Date html generated: 2017_10_03-AM-08_50_12
Last ObjectModification: 2017_07_28-AM-07_34_01

Theory : reals


Home Index