Nuprl Lemma : radd_rcos_wf
∀[x:ℝ]. (radd_rcos(x) ∈ {y:ℝ| y = (x + rcos(x))} )
Proof
Definitions occuring in Statement : 
radd_rcos: radd_rcos(x), 
rcos: rcos(x), 
req: x = y, 
radd: a + b, 
real: ℝ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
radd_rcos: radd_rcos(x), 
req: x = y, 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
real: ℝ, 
nat: ℕ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
prop: ℙ, 
implies: P ⇒ Q, 
nat_plus: ℕ+, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
and: P ∧ Q, 
sq_stable: SqStable(P), 
regular-int-seq: k-regular-seq(f), 
uimplies: b supposing a, 
le: A ≤ B, 
guard: {T}, 
iff: P ⇐⇒ Q, 
uiff: uiff(P;Q), 
subtract: n - m, 
top: Top, 
sq_type: SQType(T), 
rev_implies: P ⇐ Q, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
rev_uimplies: rev_uimplies(P;Q), 
ge: i ≥ j , 
bdd-diff: bdd-diff(f;g)
Lemmas referenced : 
addrcos_wf2, 
real_wf, 
set_wf, 
nat_plus_wf, 
all_wf, 
le_wf, 
absval_wf, 
subtract_wf, 
radd_wf, 
rcos_wf, 
nat_wf, 
sq_stable__regular-int-seq, 
less_than_wf, 
equal_wf, 
mul_preserves_le, 
squash_wf, 
true_wf, 
absval_mul, 
iff_weakening_equal, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
multiply-is-int-iff, 
add-is-int-iff, 
minus-one-mul, 
mul-distributes, 
mul-swap, 
minus-one-mul-top, 
mul-commutes, 
absval_pos, 
nat_plus_subtype_nat, 
absval-non-neg, 
absval-diff-symmetry, 
left_mul_subtract_distrib, 
nat_plus_properties, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformeq_wf, 
itermSubtract_wf, 
itermMultiply_wf, 
itermVar_wf, 
itermAdd_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_wf, 
le_functionality, 
le_transitivity, 
int-triangle-inequality, 
add_functionality_wrt_le, 
le_weakening, 
decidable__le, 
intformle_wf, 
itermConstant_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
accelerate_wf, 
regular-int-seq_wf, 
req_wf, 
req-iff-bdd-diff, 
accelerate-bdd-diff, 
bdd-diff_functionality, 
bdd-diff_weakening, 
false_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
intEquality, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
setElimination, 
rename, 
natural_numberEquality, 
lambdaFormation, 
dependent_set_memberEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
imageElimination, 
dependent_functionElimination, 
because_Cache, 
independent_isectElimination, 
productElimination, 
universeEquality, 
instantiate, 
cumulativity, 
baseApply, 
closedConclusion, 
multiplyEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
minusEquality, 
addEquality, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
computeAll, 
setEquality, 
applyLambdaEquality
Latex:
\mforall{}[x:\mBbbR{}].  (radd\_rcos(x)  \mmember{}  \{y:\mBbbR{}|  y  =  (x  +  rcos(x))\}  )
Date html generated:
2017_10_04-PM-10_22_25
Last ObjectModification:
2017_07_28-AM-08_48_29
Theory : reals_2
Home
Index