Nuprl Lemma : implies-k-1-continuous
∀[k:ℕ]. ∀[F:(ℕk ⟶ Type) ⟶ Type].
  ((∀[A,B:ℕk ⟶ Type].  F[A] ⊆r F[B] supposing A ⊆ B)
  ⇒ (∀j:ℕk. ∀Z:ℕk ⟶ Type.  Continuous(X.F[λi.if (i =z j) then X else Z i fi ]))
  ⇒ k-1-continuous{i:l}(k;T.F[T]))
Proof
Definitions occuring in Statement : 
k-1-continuous: k-1-continuous{i:l}(k;T.F[T]), 
k-subtype: A ⊆ B, 
type-continuous: Continuous(T.F[T]), 
int_seg: {i..j-}, 
nat: ℕ, 
ifthenelse: if b then t else f fi , 
eq_int: (i =z j), 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
apply: f a, 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
k-1-continuous: k-1-continuous{i:l}(k;T.F[T]), 
k-intersection: ⋂n. X[n], 
all: ∀x:A. B[x], 
nat: ℕ, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
int_seg: {i..j-}, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
lelt: i ≤ j < k, 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
type-continuous: Continuous(T.F[T]), 
squash: ↓T, 
nequal: a ≠ b ∈ T , 
true: True, 
cand: A c∧ B, 
k-subtype: A ⊆ B
Lemmas referenced : 
k-subtype_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
int_seg_wf, 
istype-universe, 
type-continuous_wf, 
ifthenelse_wf, 
eq_int_wf, 
subtype_rel_wf, 
istype-nat, 
intformless_wf, 
int_formula_prop_less_lemma, 
ge_wf, 
istype-less_than, 
subtract-1-ge-0, 
subtype_rel_isect-2, 
nat_wf, 
lt_int_wf, 
subtype_rel-equal, 
eqtt_to_assert, 
assert_of_lt_int, 
int_seg_properties, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
decidable__lt, 
squash_wf, 
true_wf, 
assert_of_eq_int, 
int_subtype_base, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
neg_assert_of_eq_int, 
subtype_rel_self, 
subtype_rel_isect_general, 
imax_wf, 
imax_nat, 
decidable__equal_int, 
subtype_rel_transitivity, 
le_wf, 
imax_unfold, 
iff_weakening_equal, 
le_int_wf, 
assert_of_le_int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
Error :lambdaFormation_alt, 
sqequalRule, 
Error :functionIsType, 
Error :inhabitedIsType, 
hypothesisEquality, 
Error :universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
Error :dependent_set_memberEquality_alt, 
addEquality, 
setElimination, 
rename, 
hypothesis, 
natural_numberEquality, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
axiomEquality, 
Error :functionIsTypeImplies, 
because_Cache, 
instantiate, 
universeEquality, 
Error :isectIsType, 
Error :isectIsTypeImplies, 
intWeakElimination, 
isectEquality, 
Error :functionExtensionality_alt, 
equalityElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
Error :equalityIstype, 
promote_hyp, 
cumulativity, 
Error :productIsType, 
hyp_replacement, 
imageElimination, 
intEquality, 
imageMemberEquality, 
baseClosed, 
applyLambdaEquality
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[F:(\mBbbN{}k  {}\mrightarrow{}  Type)  {}\mrightarrow{}  Type].
    ((\mforall{}[A,B:\mBbbN{}k  {}\mrightarrow{}  Type].    F[A]  \msubseteq{}r  F[B]  supposing  A  \msubseteq{}  B)
    {}\mRightarrow{}  (\mforall{}j:\mBbbN{}k.  \mforall{}Z:\mBbbN{}k  {}\mrightarrow{}  Type.    Continuous(X.F[\mlambda{}i.if  (i  =\msubz{}  j)  then  X  else  Z  i  fi  ]))
    {}\mRightarrow{}  k-1-continuous\{i:l\}(k;T.F[T]))
Date html generated:
2019_06_20-PM-01_13_05
Last ObjectModification:
2019_01_02-PM-03_59_13
Theory : co-recursion-2
Home
Index