Nuprl Lemma : replace-seq-from-member-enum
∀f:ℕ ⟶ 𝔹. ∀m:ℕ.  (replace-seq-from(f;m;tt) ∈ enum-fin-seq(m))
Proof
Definitions occuring in Statement : 
replace-seq-from: replace-seq-from(s;n;k), 
enum-fin-seq: enum-fin-seq(m), 
l_member: (x ∈ l), 
nat: ℕ, 
btrue: tt, 
bool: 𝔹, 
all: ∀x:A. B[x], 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
list_n: A List(n), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
enum-fin-seq: enum-fin-seq(m), 
replace-seq-from: replace-seq-from(s;n;k), 
less_than: a < b, 
less_than': less_than'(a;b), 
true: True, 
squash: ↓T, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ge: i ≥ j , 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
cand: A c∧ B, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
l_member_wf, 
nat_wf, 
bool_wf, 
replace-seq-from_wf, 
decidable__le, 
subtract_wf, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
le_wf, 
btrue_wf, 
enum-fin-seq_wf, 
list_n_wf, 
exp_wf2, 
set_wf, 
less_than_wf, 
primrec-wf2, 
primrec0_lemma, 
member_singleton, 
top_wf, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
nat_properties, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
primrec-unroll, 
squash_wf, 
true_wf, 
list_wf, 
replace-seq-from-succ, 
append_wf, 
map_wf, 
bfalse_wf, 
subtype_rel_self, 
iff_weakening_equal, 
bool_cases, 
implies_l_member_append, 
eq_int_wf, 
assert_of_eq_int, 
iff_imp_equal_bool, 
assert_wf, 
int_subtype_base, 
neg_assert_of_eq_int, 
member-map, 
assert_elim, 
btrue_neq_bfalse, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
rename, 
setElimination, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
functionEquality, 
hypothesis, 
functionExtensionality, 
applyEquality, 
hypothesisEquality, 
because_Cache, 
dependent_set_memberEquality, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
lessCases, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
isect_memberFormation, 
axiomSqEquality, 
imageElimination, 
productElimination, 
equalityElimination, 
promote_hyp, 
instantiate, 
cumulativity, 
universeEquality, 
inlFormation, 
int_eqReduceTrueSq, 
int_eqReduceFalseSq, 
productEquality, 
inrFormation, 
addLevel, 
levelHypothesis
Latex:
\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  \mforall{}m:\mBbbN{}.    (replace-seq-from(f;m;tt)  \mmember{}  enum-fin-seq(m))
Date html generated:
2019_06_20-PM-02_57_15
Last ObjectModification:
2018_08_20-PM-09_39_30
Theory : continuity
Home
Index