Nuprl Lemma : l_intersection-size

[T:Type]. ∀[eq:EqDecider(T)]. ∀[a,b,c:T List].
  (no_repeats(T;a)  no_repeats(T;b)  a ⊆  b ⊆  ((||a|| ||b||) ≤ (||c|| ||(a ⋂ b)||)))


Proof




Definitions occuring in Statement :  l_intersection: (L1 ⋂ L2) l_contains: A ⊆ B no_repeats: no_repeats(T;l) length: ||as|| list: List deq: EqDecider(T) uall: [x:A]. B[x] le: A ≤ B implies:  Q add: m universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q l_intersection: (L1 ⋂ L2) uimplies: supposing a l_contains: A ⊆ B l_member: (x ∈ l) l_all: (∀x∈L.P[x]) exists: x:A. B[x] int_seg: {i..j-} subtype_rel: A ⊆B lelt: i ≤ j < k and: P ∧ Q ge: i ≥  guard: {T} all: x:A. B[x] prop: decidable: Dec(P) or: P ∨ Q false: False nat: not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top less_than: a < b squash: T le: A ≤ B cand: c∧ B pi1: fst(t) iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b inject: Inj(A;B;f) no_repeats: no_repeats(T;l) less_than': less_than'(a;b) so_lambda: λ2x.t[x] so_apply: x[s] true: True label: ...$L... t
Lemmas referenced :  no_repeats_filter non_neg_length int_seg_properties length_wf decidable__le lelt_wf length_wf_nat nat_properties full-omega-unsat istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_seg_wf select_wf decidable__lt int_formula_prop_less_lemma no_repeats_l_index-inj l_intersection_wf l_contains_wf no_repeats_wf le_witness_for_triv list_wf deq_wf less_than_wf nat_wf member-intersection select_member l_index_wf l_member_wf pigeon-hole add_nat_wf add-is-int-iff int_term_value_add_lemma int_formula_prop_eq_lemma false_wf le_wf lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf subtract_wf intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_term_value_subtract_lemma int_formula_prop_wf itermAdd_wf deq-member_wf assert-deq-member add-member-int_seg1 intformeq_wf decidable__equal_int_seg int_seg_subtype_nat set_subtype_base int_subtype_base equal_wf squash_wf true_wf subtype_rel_self iff_weakening_equal not_wf decidable__equal_int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut Error :lambdaFormation_alt,  extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache independent_isectElimination hypothesis sqequalRule promote_hyp productElimination Error :dependent_pairFormation_alt,  hypothesisEquality Error :functionExtensionality_alt,  Error :dependent_set_memberEquality_alt,  applyEquality independent_pairFormation natural_numberEquality setElimination rename dependent_functionElimination Error :universeIsType,  unionElimination equalityTransitivity equalitySymmetry applyLambdaEquality independent_functionElimination voidElimination approximateComputation Error :lambdaEquality_alt,  int_eqEquality Error :isect_memberEquality_alt,  Error :functionIsType,  Error :equalityIsType1,  imageElimination functionExtensionality cumulativity Error :inhabitedIsType,  universeEquality Error :productIsType,  addEquality pointwiseFunctionality baseApply closedConclusion baseClosed equalityElimination instantiate hyp_replacement Error :equalityIsType4,  intEquality imageMemberEquality productEquality Error :equalityIsType3,  Error :equalityIsType2

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[a,b,c:T  List].
    (no\_repeats(T;a)
    {}\mRightarrow{}  no\_repeats(T;b)
    {}\mRightarrow{}  a  \msubseteq{}  c
    {}\mRightarrow{}  b  \msubseteq{}  c
    {}\mRightarrow{}  ((||a||  +  ||b||)  \mleq{}  (||c||  +  ||(a  \mcap{}  b)||)))



Date html generated: 2019_06_20-PM-01_58_00
Last ObjectModification: 2018_10_03-PM-10_28_04

Theory : decidable!equality


Home Index