Nuprl Lemma : tuple-type-append-equipollent

L1,L2:Type List.  tuple-type(L1) × tuple-type(L2) tuple-type(L1 L2)


Proof




Definitions occuring in Statement :  equipollent: B tuple-type: tuple-type(L) append: as bs list: List all: x:A. B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] subtype_rel: A ⊆B prop: so_apply: x[s] implies:  Q append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False nat:
Lemmas referenced :  list_induction all_wf list_wf equipollent_wf tuple-type_wf append_wf tupletype_nil_lemma list_ind_nil_lemma istype-void tupletype_cons_lemma list_ind_cons_lemma equipollent-identity unit_wf2 equipollent_same null_wf uiff_transitivity equal-wf-T-base bool_wf assert_wf eqtt_to_assert assert_of_null iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot append_is_nil equipollent_functionality_wrt_equipollent2 product_functionality_wrt_equipollent_right equipollent_inversion length_wf_nat nat_wf set_subtype_base le_wf istype-int int_subtype_base equipollent_functionality_wrt_equipollent equipollent-product-com equipollent_weakening_ext-eq ext-eq_weakening equipollent-product-assoc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination universeEquality sqequalRule Error :lambdaEquality_alt,  hypothesis productEquality hypothesisEquality applyEquality cumulativity Error :inhabitedIsType,  equalityTransitivity equalitySymmetry because_Cache Error :universeIsType,  independent_functionElimination dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination rename Error :functionIsType,  unionElimination equalityElimination baseClosed productElimination independent_isectElimination independent_pairFormation Error :equalityIsType3,  Error :equalityIsType1,  Error :dependent_set_memberEquality_alt,  Error :equalityIsType4,  intEquality natural_numberEquality hyp_replacement applyLambdaEquality setElimination

Latex:
\mforall{}L1,L2:Type  List.    tuple-type(L1)  \mtimes{}  tuple-type(L2)  \msim{}  tuple-type(L1  @  L2)



Date html generated: 2019_06_20-PM-02_19_23
Last ObjectModification: 2018_10_06-AM-11_23_57

Theory : equipollence!!cardinality!


Home Index