Nuprl Lemma : firstn_map_upto

[L:Top List]. ∀[n:ℕ].  (firstn(n;L) map(λi.L[i];upto(imin(||L||;n))))


Proof




Definitions occuring in Statement :  upto: upto(n) imin: imin(a;b) firstn: firstn(n;as) select: L[n] length: ||as|| map: map(f;as) list: List nat: uall: [x:A]. B[x] top: Top lambda: λx.A[x] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q firstn: firstn(n;as) so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] cons: [a b] colength: colength(L) decidable: Dec(P) so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) iff: ⇐⇒ Q rev_implies:  Q bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b map: map(f;as) list_ind: list_ind upto: upto(n) from-upto: [n, m) lt_int: i <j true: True le: A ≤ B int_seg: {i..j-} lelt: i ≤ j < k append: as bs compose: g
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf nat_wf equal-wf-T-base colength_wf_list top_wf less_than_transitivity1 less_than_irreflexivity list_wf list-cases list_ind_nil_lemma stuck-spread base_wf length_of_nil_lemma product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int length_of_cons_lemma imin_unfold iff_weakening_equal le_int_wf bool_wf eqtt_to_assert assert_of_le_int eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot list_ind_cons_lemma lt_int_wf assert_of_lt_int length_wf squash_wf true_wf upto_decomp add_nat_wf length_wf_nat false_wf non_neg_length decidable__lt lelt_wf map_cons_lemma map-map add-subtract-cancel upto_wf int_seg_wf map_nil_lemma select_cons_tl_sq add-is-int-iff select-cons int_seg_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination sqequalAxiom applyEquality because_Cache unionElimination baseClosed promote_hyp hypothesis_subsumption productElimination equalityTransitivity equalitySymmetry applyLambdaEquality dependent_set_memberEquality addEquality instantiate cumulativity imageElimination sqequalIntensionalEquality equalityElimination universeEquality imageMemberEquality callbyvalueReduce sqleReflexivity pointwiseFunctionality baseApply closedConclusion

Latex:
\mforall{}[L:Top  List].  \mforall{}[n:\mBbbN{}].    (firstn(n;L)  \msim{}  map(\mlambda{}i.L[i];upto(imin(||L||;n))))



Date html generated: 2017_04_17-AM-08_01_12
Last ObjectModification: 2017_02_27-PM-04_33_04

Theory : list_1


Home Index