Nuprl Lemma : member_firstn
∀[T:Type]. ∀L:T List. ∀n:ℕ. ∀x:T.  ((x ∈ firstn(n;L)) 
⇐⇒ ∃i:ℕ. ((i < n ∧ i < ||L||) ∧ (x = L[i] ∈ T)))
Proof
Definitions occuring in Statement : 
firstn: firstn(n;as)
, 
l_member: (x ∈ l)
, 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
nat: ℕ
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
it: ⋅
, 
nil: []
, 
select: L[n]
, 
so_apply: x[s1;s2;s3]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
firstn: firstn(n;as)
, 
so_apply: x[s]
, 
top: Top
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
prop: ℙ
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
bool: 𝔹
, 
unit: Unit
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
guard: {T}
, 
nat_plus: ℕ+
, 
cand: A c∧ B
, 
cons: [a / b]
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
less_than: a < b
, 
squash: ↓T
, 
subtract: n - m
, 
sq_type: SQType(T)
, 
true: True
Lemmas referenced : 
istype-universe, 
list_wf, 
istype-less_than, 
length_of_cons_lemma, 
list_ind_cons_lemma, 
istype-base, 
stuck-spread, 
length_of_nil_lemma, 
list_ind_nil_lemma, 
istype-nat, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_properties, 
select_wf, 
equal_wf, 
length_wf, 
less_than_wf, 
exists_wf, 
firstn_wf, 
l_member_wf, 
iff_wf, 
nat_wf, 
all_wf, 
list_induction, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
nil_wf, 
btrue_neq_bfalse, 
satisfiable-full-omega-tt, 
intformless_wf, 
int_formula_prop_less_lemma, 
equal-wf-T-base, 
bnot_wf, 
le_int_wf, 
assert_wf, 
int_subtype_base, 
le_wf, 
set_subtype_base, 
bool_wf, 
equal-wf-base, 
lt_int_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int, 
cons_wf, 
istype-le, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract_wf, 
cons_member, 
false_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
intformeq_wf, 
itermAdd_wf, 
add-is-int-iff, 
nat_plus_properties, 
decidable__lt, 
length_wf_nat, 
add_nat_plus, 
select-cons-tl, 
add-associates, 
add-swap, 
add-commutes, 
zero-add, 
subtype_base_sq, 
decidable__equal_int, 
iff_weakening_equal, 
subtype_rel_self, 
select_cons_tl, 
true_wf, 
squash_wf
Rules used in proof : 
universeEquality, 
instantiate, 
equalityIstype, 
productIsType, 
functionIsType, 
baseClosed, 
inhabitedIsType, 
universeIsType, 
independent_pairFormation, 
voidElimination, 
isect_memberEquality_alt, 
int_eqEquality, 
dependent_pairFormation_alt, 
independent_functionElimination, 
approximateComputation, 
unionElimination, 
natural_numberEquality, 
dependent_functionElimination, 
productElimination, 
independent_isectElimination, 
productEquality, 
rename, 
setElimination, 
because_Cache, 
hypothesis, 
lambdaEquality_alt, 
sqequalRule, 
hypothesisEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
thin, 
cut, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
lambdaFormation, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
lambdaEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
computeAll, 
applyEquality, 
closedConclusion, 
baseApply, 
equalityElimination, 
addEquality, 
dependent_set_memberEquality_alt, 
promote_hyp, 
pointwiseFunctionality, 
applyLambdaEquality, 
imageElimination, 
hyp_replacement, 
inlFormation_alt, 
imageMemberEquality, 
inrFormation_alt
Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}n:\mBbbN{}.  \mforall{}x:T.    ((x  \mmember{}  firstn(n;L))  \mLeftarrow{}{}\mRightarrow{}  \mexists{}i:\mBbbN{}.  ((i  <  n  \mwedge{}  i  <  ||L||)  \mwedge{}  (x  =  L[i])))
Date html generated:
2019_10_15-AM-10_22_27
Last ObjectModification:
2019_08_05-PM-01_56_49
Theory : list_1
Home
Index