Nuprl Lemma : select_concat

[T:Type]
  ∀ll:T List List. ∀n:ℕ||concat(ll)||.
    ∃m:ℕ||ll||
     ((||concat(firstn(m;ll))|| ≤ n)
     c∧ ||concat(firstn(m;ll))|| < ||ll[m]||
     c∧ (concat(ll)[n] ll[m][n ||concat(firstn(m;ll))||] ∈ T))


Proof




Definitions occuring in Statement :  firstn: firstn(n;as) select: L[n] length: ||as|| concat: concat(ll) list: List int_seg: {i..j-} less_than: a < b uall: [x:A]. B[x] cand: c∧ B le: A ≤ B all: x:A. B[x] exists: x:A. B[x] subtract: m natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q prop: cand: c∧ B int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top less_than: a < b squash: T le: A ≤ B concat: concat(ll) select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] less_than': less_than'(a;b) nat_plus: + true: True uiff: uiff(P;Q) subtype_rel: A ⊆B cons: [a b] sq_type: SQType(T) iff: ⇐⇒ Q rev_implies:  Q ge: i ≥  subtract: m firstn: firstn(n;as) so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] bool: 𝔹 unit: Unit btrue: tt ifthenelse: if then else fi  bfalse: ff
Lemmas referenced :  list_induction list_wf all_wf int_seg_wf length_wf concat_wf exists_wf le_wf firstn_wf less_than_wf subtract_wf select_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma equal_wf itermSubtract_wf int_term_value_subtract_lemma reduce_nil_lemma length_of_nil_lemma stuck-spread base_wf length_of_cons_lemma cons_wf reduce_cons_lemma false_wf add_nat_plus length_wf_nat nat_plus_wf nat_plus_properties add-is-int-iff itermAdd_wf intformeq_wf int_term_value_add_lemma int_formula_prop_eq_lemma lelt_wf subtype_rel_list top_wf subtype_base_sq int_subtype_base decidable__equal_int squash_wf true_wf select_append_front iff_weakening_equal first0 non_neg_length append_wf length-append length_append add-member-int_seg2 lt_int_wf bool_wf equal-wf-T-base assert_wf le_int_wf bnot_wf list_ind_cons_lemma uiff_transitivity eqtt_to_assert assert_of_lt_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int add-subtract-cancel select-cons-tl select_append_back add-associates minus-one-mul add-commutes minus-one-mul-top minus-add
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin sqequalRule independent_functionElimination universeEquality cumulativity hypothesisEquality hypothesis lambdaEquality natural_numberEquality because_Cache productEquality setElimination rename independent_isectElimination productElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll imageElimination baseClosed lambdaFormation dependent_set_memberEquality imageMemberEquality equalityTransitivity equalitySymmetry applyLambdaEquality pointwiseFunctionality promote_hyp baseApply closedConclusion addEquality applyEquality instantiate equalityElimination hyp_replacement minusEquality

Latex:
\mforall{}[T:Type]
    \mforall{}ll:T  List  List.  \mforall{}n:\mBbbN{}||concat(ll)||.
        \mexists{}m:\mBbbN{}||ll||
          ((||concat(firstn(m;ll))||  \mleq{}  n)
          c\mwedge{}  n  -  ||concat(firstn(m;ll))||  <  ||ll[m]||
          c\mwedge{}  (concat(ll)[n]  =  ll[m][n  -  ||concat(firstn(m;ll))||]))



Date html generated: 2017_04_14-AM-09_24_20
Last ObjectModification: 2017_02_27-PM-03_59_54

Theory : list_1


Home Index