Nuprl Lemma : exp-divides-exp2

x,y:ℤ.  (x ⇐⇒ ∃n:ℕ+(x^n y^n))


Proof




Definitions occuring in Statement :  divides: a exp: i^n nat_plus: + all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q int:
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T uall: [x:A]. B[x] prop: rev_implies:  Q exists: x:A. B[x] subtype_rel: A ⊆B nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True exp: i^n top: Top divides: a decidable: Dec(P) or: P ∨ Q uimplies: supposing a sq_type: SQType(T) guard: {T} false: False uiff: uiff(P;Q) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) so_lambda: λ2x.t[x] so_apply: x[s] int_nzero: -o nequal: a ≠ b ∈ 
Lemmas referenced :  divides_wf nat_plus_wf exp_wf2 nat_plus_subtype_nat istype-int istype-less_than primrec1_lemma istype-void mul-commutes one-mul divides-iff-gcd gcd_is_divisor_2 decidable__equal_int subtype_base_sq int_subtype_base nat_plus_properties multiply-is-int-iff full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermVar_wf itermMultiply_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_formula_prop_wf false_wf gcd_is_divisor_1 divides_transitivity gcd_wf gcd-exp assoced_elim equal_wf squash_wf true_wf istype-universe exp-of-mul subtype_rel_self iff_weakening_equal set_subtype_base less_than_wf mul_cancel_in_eq exp_wf3 nequal_wf exp-equal-one intformless_wf int_formula_prop_less_lemma minus-is-int-iff itermMinus_wf int_term_value_minus_lemma exp-equal-minusone
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  independent_pairFormation Error :universeIsType,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination sqequalRule Error :productIsType,  applyEquality because_Cache Error :inhabitedIsType,  Error :dependent_pairFormation_alt,  Error :dependent_set_memberEquality_alt,  closedConclusion natural_numberEquality imageMemberEquality baseClosed dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination independent_functionElimination unionElimination instantiate cumulativity intEquality independent_isectElimination setElimination rename pointwiseFunctionality equalityTransitivity equalitySymmetry promote_hyp baseApply approximateComputation Error :lambdaEquality_alt,  int_eqEquality minusEquality Error :equalityIstype,  sqequalBase imageElimination universeEquality Error :functionIsType

Latex:
\mforall{}x,y:\mBbbZ{}.    (x  |  y  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}\msupplus{}.  (x\^{}n  |  y\^{}n))



Date html generated: 2019_06_20-PM-02_32_51
Last ObjectModification: 2018_11_28-PM-07_19_16

Theory : num_thy_1


Home Index