Nuprl Lemma : twosquareinv-involution
∀p:{p:{2...}| prime(p)} . ∀t:x:ℕ × y:ℕ × {z:ℕ| ((x * x) + (4 * y * z)) = p ∈ ℤ} .  (twosquareinv(twosquareinv(t)) ~ t)
Proof
Definitions occuring in Statement : 
twosquareinv: twosquareinv(t)
, 
prime: prime(a)
, 
int_upper: {i...}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
set: {x:A| B[x]} 
, 
product: x:A × B[x]
, 
multiply: n * m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
sqequal: s ~ t
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
prop: ℙ
, 
int_upper: {i...}
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
guard: {T}
, 
sq_type: SQType(T)
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
twosquareinv: twosquareinv(t)
, 
spreadn: spread3, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
top: Top
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
bfalse: ff
, 
bnot: ¬bb
, 
assert: ↑b
, 
subtract: n - m
Lemmas referenced : 
istype-int_upper, 
prime_wf, 
int_upper_wf, 
int_subtype_base, 
le_wf, 
set_subtype_base, 
istype-int, 
istype-nat, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_and_lemma, 
itermAdd_wf, 
itermVar_wf, 
itermMultiply_wf, 
intformeq_wf, 
intformand_wf, 
decidable__equal_int, 
subtype_base_sq, 
istype-le, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
full-omega-unsat, 
decidable__le, 
int_upper_properties, 
nat_properties, 
not-prime-mult, 
not-prime-square, 
lt_int_wf, 
subtract_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
intformless_wf, 
itermSubtract_wf, 
int_formula_prop_less_lemma, 
int_term_value_subtract_lemma, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
not_functionality_wrt_uiff, 
assert_wf, 
less_than_wf, 
nat_wf, 
product_subtype_base, 
add-associates, 
minus-add, 
minus-one-mul, 
minus-one-mul-top, 
two-mul, 
add-swap, 
mul-distributes-right, 
add-commutes, 
zero-mul, 
add-zero, 
add-mul-special, 
zero-add, 
minus-minus
Rules used in proof : 
universeIsType, 
equalitySymmetry, 
sqequalBase, 
independent_isectElimination, 
natural_numberEquality, 
lambdaEquality_alt, 
intEquality, 
isectElimination, 
sqequalHypSubstitution, 
applyEquality, 
hypothesisEquality, 
baseClosed, 
closedConclusion, 
baseApply, 
sqequalRule, 
equalityIstype, 
setIsType, 
because_Cache, 
extract_by_obid, 
introduction, 
productIsType, 
hypothesis, 
cut, 
rename, 
setElimination, 
thin, 
productElimination, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_pairFormation, 
int_eqEquality, 
cumulativity, 
instantiate, 
multiplyEquality, 
voidElimination, 
Error :memTop, 
dependent_pairFormation_alt, 
independent_functionElimination, 
approximateComputation, 
unionElimination, 
dependent_functionElimination, 
dependent_set_memberEquality_alt, 
equalityTransitivity, 
inhabitedIsType, 
lambdaFormation, 
equalityElimination, 
addEquality, 
dependent_pairFormation, 
lambdaEquality, 
isect_memberEquality, 
voidEquality, 
imageMemberEquality, 
imageElimination, 
promote_hyp, 
productEquality, 
independent_pairEquality, 
minusEquality
Latex:
\mforall{}p:\{p:\{2...\}|  prime(p)\}  .  \mforall{}t:x:\mBbbN{}  \mtimes{}  y:\mBbbN{}  \mtimes{}  \{z:\mBbbN{}|  ((x  *  x)  +  (4  *  y  *  z))  =  p\}  .
    (twosquareinv(twosquareinv(t))  \msim{}  t)
Date html generated:
2020_05_19-PM-10_03_54
Last ObjectModification:
2019_12_26-AM-11_44_29
Theory : num_thy_1
Home
Index