Nuprl Lemma : twosquareinv-involution

p:{p:{2...}| prime(p)} . ∀t:x:ℕ × y:ℕ × {z:ℕ((x x) (4 z)) p ∈ ℤ.  (twosquareinv(twosquareinv(t)) t)


Proof




Definitions occuring in Statement :  twosquareinv: twosquareinv(t) prime: prime(a) int_upper: {i...} nat: all: x:A. B[x] set: {x:A| B[x]}  product: x:A × B[x] multiply: m add: m natural_number: $n int: sqequal: t equal: t ∈ T
Definitions unfolded in proof :  prop: int_upper: {i...} uimplies: supposing a so_apply: x[s] so_lambda: λ2x.t[x] uall: [x:A]. B[x] nat: subtype_rel: A ⊆B member: t ∈ T all: x:A. B[x] and: P ∧ Q guard: {T} sq_type: SQType(T) exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) ge: i ≥  false: False implies:  Q not: ¬A twosquareinv: twosquareinv(t) spreadn: spread3 bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  top: Top sq_stable: SqStable(P) squash: T bfalse: ff bnot: ¬bb assert: b subtract: m
Lemmas referenced :  istype-int_upper prime_wf int_upper_wf int_subtype_base le_wf set_subtype_base istype-int istype-nat int_term_value_add_lemma int_term_value_var_lemma int_term_value_mul_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma itermAdd_wf itermVar_wf itermMultiply_wf intformeq_wf intformand_wf decidable__equal_int subtype_base_sq istype-le int_formula_prop_wf int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma itermConstant_wf intformle_wf intformnot_wf full-omega-unsat decidable__le int_upper_properties nat_properties not-prime-mult not-prime-square lt_int_wf subtract_wf bool_wf eqtt_to_assert assert_of_lt_int intformless_wf itermSubtract_wf int_formula_prop_less_lemma int_term_value_subtract_lemma eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot not_functionality_wrt_uiff assert_wf less_than_wf nat_wf product_subtype_base add-associates minus-add minus-one-mul minus-one-mul-top two-mul add-swap mul-distributes-right add-commutes zero-mul add-zero add-mul-special zero-add minus-minus
Rules used in proof :  universeIsType equalitySymmetry sqequalBase independent_isectElimination natural_numberEquality lambdaEquality_alt intEquality isectElimination sqequalHypSubstitution applyEquality hypothesisEquality baseClosed closedConclusion baseApply sqequalRule equalityIstype setIsType because_Cache extract_by_obid introduction productIsType hypothesis cut rename setElimination thin productElimination lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_pairFormation int_eqEquality cumulativity instantiate multiplyEquality voidElimination Error :memTop,  dependent_pairFormation_alt independent_functionElimination approximateComputation unionElimination dependent_functionElimination dependent_set_memberEquality_alt equalityTransitivity inhabitedIsType lambdaFormation equalityElimination addEquality dependent_pairFormation lambdaEquality isect_memberEquality voidEquality imageMemberEquality imageElimination promote_hyp productEquality independent_pairEquality minusEquality

Latex:
\mforall{}p:\{p:\{2...\}|  prime(p)\}  .  \mforall{}t:x:\mBbbN{}  \mtimes{}  y:\mBbbN{}  \mtimes{}  \{z:\mBbbN{}|  ((x  *  x)  +  (4  *  y  *  z))  =  p\}  .
    (twosquareinv(twosquareinv(t))  \msim{}  t)



Date html generated: 2020_05_19-PM-10_03_54
Last ObjectModification: 2019_12_26-AM-11_44_29

Theory : num_thy_1


Home Index