Nuprl Lemma : W-type-ext
∀[A:Type]. ∀[B:A ⟶ Type]. W-type(A; a.B[a]) ≡ a:A × (B[a] ⟶ W-type(A; a.B[a])) supposing ∀x,y:A.  Dec(x = y ∈ A)
Proof
Definitions occuring in Statement : 
W-type: W-type(A; a.B[a]), 
ext-eq: A ≡ B, 
decidable: Dec(P), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
function: x:A ⟶ B[x], 
product: x:A × B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
ext-eq: A ≡ B, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
W-type: W-type(A; a.B[a]), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
guard: {T}, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
prop: ℙ, 
W-sup: W-sup(a;f), 
nat: ℕ, 
exposed-bfalse: exposed-bfalse, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
deq: EqDecider(T), 
eqof: eqof(d), 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
le: A ≤ B, 
less_than': less_than'(a;b), 
ge: i ≥ j , 
int_upper: {i...}, 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
W-bars: W-bars(w;p), 
squash: ↓T, 
upto: upto(n), 
from-upto: [n, m), 
lt_int: i <z j, 
isr: isr(x), 
nat_plus: ℕ+, 
true: True, 
subtract: n - m, 
eq_int: (i =z j), 
W-select: W-select(w;s), 
compose: f o g, 
cons: [a / b], 
colength: colength(L), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
nil: [], 
less_than: a < b
Lemmas referenced : 
co-W-ext, 
subtype_rel_weakening, 
co-W_wf, 
deq-exists, 
nat_wf, 
unit_wf2, 
all_wf, 
W-bars_wf, 
W-type_wf, 
W-sup_wf, 
decidable_wf, 
equal_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
safe-assert-deq, 
subtype_rel-equal, 
and_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
it_wf, 
neg_assert_of_eq_int, 
upper_subtype_nat, 
false_wf, 
nat_properties, 
nequal-le-implies, 
zero-add, 
le_wf, 
subtract_wf, 
int_upper_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__equal_int, 
int_subtype_base, 
map_nil_lemma, 
W_select_nil_lemma, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
assert_wf, 
isr_wf, 
W-select_wf, 
map_wf, 
int_seg_wf, 
subtype_rel_function, 
int_seg_subtype_nat, 
subtype_rel_self, 
upto_wf, 
upto_decomp2, 
decidable__lt, 
not-lt-2, 
not-equal-2, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
condition-implies-le, 
add-commutes, 
minus-add, 
minus-zero, 
less_than_wf, 
map_cons_lemma, 
null_cons_lemma, 
reduce_hd_cons_lemma, 
reduce_tl_cons_lemma, 
map-map, 
bnot_wf, 
eqof_wf, 
not_wf, 
member_wf, 
bool_cases, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
subtype_rel_list, 
list_wf, 
intformless_wf, 
int_formula_prop_less_lemma, 
ge_wf, 
equal-wf-T-base, 
colength_wf_list, 
list-cases, 
product_subtype_list, 
spread_cons_lemma, 
itermAdd_wf, 
int_term_value_add_lemma, 
set_subtype_base, 
add-subtract-cancel
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
hypothesis_subsumption, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
applyEquality, 
because_Cache, 
hypothesis, 
productEquality, 
functionEquality, 
independent_isectElimination, 
productElimination, 
dependent_pairEquality, 
functionExtensionality, 
dependent_set_memberEquality, 
lambdaFormation, 
independent_functionElimination, 
unionEquality, 
dependent_functionElimination, 
cumulativity, 
independent_pairEquality, 
axiomEquality, 
universeEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
unionElimination, 
equalityElimination, 
inlEquality, 
applyLambdaEquality, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
voidElimination, 
inrEquality, 
approximateComputation, 
int_eqEquality, 
intEquality, 
voidEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
addEquality, 
minusEquality, 
impliesFunctionality, 
intWeakElimination, 
axiomSqEquality
Latex:
\mforall{}[A:Type]
    \mforall{}[B:A  {}\mrightarrow{}  Type].  W-type(A;  a.B[a])  \mequiv{}  a:A  \mtimes{}  (B[a]  {}\mrightarrow{}  W-type(A;  a.B[a])) 
    supposing  \mforall{}x,y:A.    Dec(x  =  y)
Date html generated:
2019_10_16-AM-11_37_56
Last ObjectModification:
2018_08_22-AM-10_05_28
Theory : bar!induction
Home
Index