Nuprl Lemma : decidable-filter
∀[T:Type]
  ∀L:T List
    ∀[P:{x:T| (x ∈ L)}  ⟶ ℙ]. ((∀x∈L.Dec(P[x])) ⇒ (∃L':T List. (L' ⊆ L ∧ (∀x:T. ((x ∈ L') ⇐⇒ (x ∈ L) ∧ P[x])))))
Proof
Definitions occuring in Statement : 
sublist: L1 ⊆ L2, 
l_all: (∀x∈L.P[x]), 
l_member: (x ∈ l), 
list: T List, 
decidable: Dec(P), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
and: P ∧ Q, 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
implies: P ⇒ Q, 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
exists: ∃x:A. B[x], 
cand: A c∧ B, 
top: Top, 
uimplies: b supposing a, 
not: ¬A, 
false: False, 
decidable: Dec(P), 
or: P ∨ Q, 
guard: {T}, 
cons: [a / b], 
true: True, 
sublist: L1 ⊆ L2, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
less_than: a < b, 
squash: ↓T, 
ge: i ≥ j , 
le: A ≤ B, 
nat: ℕ, 
l_member: (x ∈ l)
Lemmas referenced : 
list_induction, 
uall_wf, 
l_all_wf, 
l_member_wf, 
decidable_wf, 
exists_wf, 
list_wf, 
sublist_wf, 
all_wf, 
iff_wf, 
l_all_wf_nil, 
cons_wf, 
nil_wf, 
nil-sublist, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
btrue_neq_bfalse, 
l_all_cons, 
cons_member, 
cons_sublist_cons, 
equal_wf, 
and_wf, 
list-cases, 
product_subtype_list, 
nil_sublist, 
list-subtype, 
subtype_rel_list, 
int_seg_wf, 
length_wf, 
increasing_wf, 
length_wf_nat, 
select_wf, 
int_seg_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
non_neg_length, 
lelt_wf, 
nat_properties, 
l_member-settype, 
set_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
because_Cache, 
universeEquality, 
hypothesis, 
setElimination, 
rename, 
applyEquality, 
functionExtensionality, 
setEquality, 
productEquality, 
independent_functionElimination, 
voidElimination, 
voidEquality, 
dependent_functionElimination, 
dependent_pairFormation, 
isect_memberEquality, 
independent_pairFormation, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
unionElimination, 
inlFormation, 
inrFormation, 
hyp_replacement, 
dependent_set_memberEquality, 
applyLambdaEquality, 
promote_hyp, 
hypothesis_subsumption, 
natural_numberEquality, 
addLevel, 
levelHypothesis, 
int_eqEquality, 
intEquality, 
computeAll, 
imageElimination
Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List
        \mforall{}[P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbP{}]
            ((\mforall{}x\mmember{}L.Dec(P[x]))  {}\mRightarrow{}  (\mexists{}L':T  List.  (L'  \msubseteq{}  L  \mwedge{}  (\mforall{}x:T.  ((x  \mmember{}  L')  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  L)  \mwedge{}  P[x])))))
Date html generated:
2017_10_01-AM-09_13_07
Last ObjectModification:
2017_07_26-PM-04_48_38
Theory : general
Home
Index