Nuprl Lemma : enumerate-increases
∀[P:ℕ ⟶ 𝔹]. ∀[n,m:ℕ].  enumerate(P;n) < enumerate(P;m) supposing n < m supposing ∀n:ℕ. ∃k:ℕ. ((↑(P k)) ∧ (n ≤ k))
Proof
Definitions occuring in Statement : 
enumerate: enumerate(P;n), 
nat: ℕ, 
assert: ↑b, 
bool: 𝔹, 
less_than: a < b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
le: A ≤ B, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
apply: f a, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
nat: ℕ, 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
assert: ↑b, 
bnot: ¬bb, 
guard: {T}, 
sq_type: SQType(T), 
or: P ∨ Q, 
bfalse: ff, 
prop: ℙ, 
not: ¬A, 
false: False, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
ge: i ≥ j , 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
btrue: tt, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
implies: P ⇒ Q, 
top: Top, 
enumerate: enumerate(P;n), 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
has-value: (a)↓, 
decidable: Dec(P), 
nequal: a ≠ b ∈ T , 
true: True, 
subtract: n - m, 
le: A ≤ B, 
less_than: a < b, 
squash: ↓T, 
cand: A c∧ B
Lemmas referenced : 
istype-less_than, 
member-less_than, 
enumerate_wf, 
istype-nat, 
istype-assert, 
istype-le, 
bool_wf, 
nat_wf, 
add-subtract-cancel, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
intformeq_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
nat_properties, 
assert_of_eq_int, 
eqtt_to_assert, 
eq_int_wf, 
primrec-unroll, 
set_wf, 
assert_wf, 
int-value-type, 
value-type-has-value, 
le_wf, 
int_formula_prop_not_lemma, 
intformnot_wf, 
decidable__le, 
mu_wf, 
assert_elim, 
add-zero, 
zero-mul, 
zero-add, 
add-commutes, 
add-mul-special, 
add-swap, 
minus-one-mul, 
minus-add, 
add-associates, 
int_subtype_base, 
set_subtype_base, 
add-is-int-iff, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract_wf, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
full-omega-unsat, 
istype-int, 
ge_wf, 
subtract-1-ge-0, 
less_than_functionality, 
le_weakening, 
le_weakening2, 
squash_wf, 
less_than_wf, 
and_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality_alt, 
independent_isectElimination, 
applyEquality, 
lambdaEquality_alt, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
isectIsTypeImplies, 
because_Cache, 
functionIsType, 
productIsType, 
universeIsType, 
lambdaFormation, 
independent_functionElimination, 
cumulativity, 
instantiate, 
promote_hyp, 
computeAll, 
independent_pairFormation, 
dependent_functionElimination, 
intEquality, 
int_eqEquality, 
lambdaEquality, 
dependent_pairFormation, 
productElimination, 
equalityElimination, 
unionElimination, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
natural_numberEquality, 
addEquality, 
setEquality, 
functionExtensionality, 
callbyvalueReduce, 
dependent_set_memberEquality, 
multiplyEquality, 
baseClosed, 
closedConclusion, 
baseApply, 
applyLambdaEquality, 
lambdaFormation_alt, 
intWeakElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
Error :memTop, 
functionIsTypeImplies, 
dependent_set_memberEquality_alt, 
imageElimination, 
functionEquality, 
productEquality, 
hyp_replacement, 
equalityIstype, 
imageMemberEquality
Latex:
\mforall{}[P:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}]
    \mforall{}[n,m:\mBbbN{}].    enumerate(P;n)  <  enumerate(P;m)  supposing  n  <  m  
    supposing  \mforall{}n:\mBbbN{}.  \mexists{}k:\mBbbN{}.  ((\muparrow{}(P  k))  \mwedge{}  (n  \mleq{}  k))
 Date html generated: 
2020_05_20-AM-08_10_51
 Last ObjectModification: 
2020_01_04-PM-11_12_55
Theory : general
Home
Index