Nuprl Lemma : fix_property
∀[T:Type]. ∀eq:EqDecider(T). ∀f:T ⟶ T.  (retraction(T;f) ⇒ (∀x:T. (((f f**(x)) = f**(x) ∈ T) ∧ f**(x) is f*(x))))
Proof
Definitions occuring in Statement : 
fix: f**(x), 
retraction: retraction(T;f), 
fun-connected: y is f*(x), 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
retraction: retraction(T;f), 
exists: ∃x:A. B[x], 
member: t ∈ T, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
and: P ∧ Q, 
uimplies: b supposing a, 
so_apply: x[s], 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
guard: {T}, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
uiff: uiff(P;Q), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
cand: A c∧ B, 
fix: f**(x), 
ycomb: Y, 
eqof: eqof(d), 
deq: EqDecider(T), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
less_than: a < b, 
squash: ↓T
Lemmas referenced : 
less_than_wf, 
all_wf, 
subtract_wf, 
equal_wf, 
fix_wf, 
fun-connected_wf, 
set_wf, 
primrec-wf2, 
nat_wf, 
add_nat_wf, 
false_wf, 
le_wf, 
nat_properties, 
decidable__le, 
add-is-int-iff, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
retraction_wf, 
deq_wf, 
bool_wf, 
equal-wf-T-base, 
assert_wf, 
bnot_wf, 
not_wf, 
eqof_wf, 
uiff_transitivity, 
eqtt_to_assert, 
safe-assert-deq, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
fun-connected-test2, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
fun-connected_transitivity, 
fun-connected-step, 
decidable-equal-deq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
hypothesis, 
addLevel, 
sqequalHypSubstitution, 
productElimination, 
thin, 
introduction, 
extract_by_obid, 
isectElimination, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
cumulativity, 
because_Cache, 
sqequalRule, 
natural_numberEquality, 
rename, 
setElimination, 
lambdaEquality, 
functionEquality, 
productEquality, 
independent_isectElimination, 
intEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
dependent_set_memberEquality, 
addEquality, 
independent_pairFormation, 
applyLambdaEquality, 
unionElimination, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
baseClosed, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
independent_functionElimination, 
levelHypothesis, 
universeEquality, 
equalityElimination, 
impliesFunctionality, 
imageElimination
Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}f:T  {}\mrightarrow{}  T.
        (retraction(T;f)  {}\mRightarrow{}  (\mforall{}x:T.  (((f  f**(x))  =  f**(x))  \mwedge{}  f**(x)  is  f*(x))))
 Date html generated: 
2018_05_21-PM-07_46_57
 Last ObjectModification: 
2017_07_26-PM-05_24_29
Theory : general
Home
Index