Nuprl Lemma : valuation-exists

x:formula(). ∀v0:{a:formula()| a ⊆ x ∧ (↑pvar?(a))}  ⟶ 𝔹.  (∃f:{a:formula()| a ⊆ x}  ⟶ 𝔹 [valuation(v0;x;f)])


Proof




Definitions occuring in Statement :  valuation: valuation(v0;x;f) psub: a ⊆ b pvar?: pvar?(v) formula: formula() assert: b bool: 𝔹 all: x:A. B[x] sq_exists: x:A [B[x]] and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  prop: uall: [x:A]. B[x] and: P ∧ Q member: t ∈ T all: x:A. B[x] not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B uimplies: supposing a subtype_rel: A ⊆B nat: implies:  Q so_apply: x[s] so_lambda: λ2x.t[x] guard: {T} bdd-val: bdd-val(v0;x;n) top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) ge: i ≥  lelt: i ≤ j < k int_seg: {i..j-} rev_implies:  Q iff: ⇐⇒ Q pimp: pimp(left;right) por: por(left;right) band: p ∧b q pand: pand(left;right) squash: T less_than: a < b pnot: pnot(sub) bnot: ¬bb bfalse: ff true: True pi1: fst(t) pvar?: pvar?(v) assert: b cand: c∧ B formula_ind: formula_ind prank: prank(x) extend-val: extend-val(v0;g;x) formula_size: formula_size(p) pvar: pvar(name) ifthenelse: if then else fi  eq_atom: =a y uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 ext-eq: A ≡ B sq_type: SQType(T) psub: a ⊆ b istype: istype(T) sq_exists: x:A [B[x]] valuation: valuation(v0;x;f)
Lemmas referenced :  formula_wf bool_wf pvar?_wf assert_wf psub_wf istype-false int_seg_subtype_nat int_seg_wf nat_wf bdd-val_wf uniform-comp-nat-induction prank_wf less_than_wf le_wf decidable__lt int_formula_prop_eq_lemma int_term_value_subtract_lemma intformeq_wf itermSubtract_wf int_formula_prop_wf int_formula_prop_less_lemma int_formula_prop_not_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma istype-void int_formula_prop_and_lemma istype-int intformless_wf intformnot_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf full-omega-unsat decidable__le nat_properties subtract_nat_wf subtract_wf assert_of_bnot iff_weakening_uiff iff_transitivity assert_of_le_int bool_cases iff_weakening_equal imax_unfold add_functionality_wrt_eq true_wf squash_wf not_wf le_int_wf ifthenelse_wf pimp_wf por_wf bor_wf imax_wf pand_wf pnot_wf false_wf add-is-int-iff bnot_wf int_term_value_add_lemma itermAdd_wf formula_size_wf neg_assert_of_eq_atom assert-bnot bool_subtype_base bool_cases_sqequal eqff_to_assert pvar_wf atom_subtype_base assert_of_eq_atom eqtt_to_assert eq_atom_wf formula-ext subtype_rel_self int_subtype_base set_subtype_base subtype_base_sq decidable__equal_int subtract-1-ge-0 int_seg_properties ge_wf psub_transitivity psub_weakening equal_wf istype-less_than istype-le istype-assert psub-same band_wf subtype_rel_sets subtype_rel_dep_function prank_functionality extend-val_wf add_nat_wf valuation_wf set_wf
Rules used in proof :  hypothesis thin isectElimination sqequalHypSubstitution extract_by_obid introduction universeIsType productIsType sqequalRule hypothesisEquality inhabitedIsType setIsType functionIsType cut lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution because_Cache independent_pairFormation independent_isectElimination applyEquality rename setElimination natural_numberEquality isectIsType isect_memberFormation_alt independent_functionElimination lambdaEquality_alt dependent_set_memberFormation_alt equalitySymmetry equalityTransitivity equalityIsType1 voidElimination isect_memberEquality_alt int_eqEquality dependent_pairFormation_alt approximateComputation applyLambdaEquality unionElimination dependent_functionElimination dependent_set_memberEquality_alt productElimination universeEquality imageMemberEquality intEquality addEquality pointwiseFunctionality imageElimination baseClosed closedConclusion baseApply equalityIsType2 atomEquality cumulativity equalityElimination tokenEquality promote_hyp hypothesis_subsumption instantiate functionIsTypeImplies axiomEquality intWeakElimination inrFormation inlFormation inrFormation_alt Error :memTop,  isectIsTypeImplies equalityIstype inlFormation_alt unionIsType productEquality setEquality dependent_set_memberEquality lambdaEquality lambdaFormation dependent_pairFormation isect_memberEquality voidEquality dependent_set_memberFormation

Latex:
\mforall{}x:formula().  \mforall{}v0:\{a:formula()|  a  \msubseteq{}  x  \mwedge{}  (\muparrow{}pvar?(a))\}    {}\mrightarrow{}  \mBbbB{}.
    (\mexists{}f:\{a:formula()|  a  \msubseteq{}  x\}    {}\mrightarrow{}  \mBbbB{}  [valuation(v0;x;f)])



Date html generated: 2020_05_20-AM-08_19_18
Last ObjectModification: 2020_01_27-PM-01_36_09

Theory : general


Home Index