Nuprl Lemma : swapped_select
∀[T:Type]. ∀[L1,L2:T List]. ∀[i,j:ℕ||L1||].
  {(((L2[i] = L1[j] ∈ T) ∧ (L2[j] = L1[i] ∈ T)) ∧ (||L2|| = ||L1|| ∈ ℤ) ∧ (L1 = swap(L2;i;j) ∈ (T List)))
  ∧ (∀[x:ℕ||L2||]. (L2[x] = L1[x] ∈ T) supposing ((¬(x = j ∈ ℤ)) and (¬(x = i ∈ ℤ))))} 
  supposing L2 = swap(L1;i;j) ∈ (T List)
Proof
Definitions occuring in Statement : 
swap: swap(L;i;j)
, 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
not: ¬A
, 
and: P ∧ Q
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
guard: {T}
, 
and: P ∧ Q
, 
prop: ℙ
, 
int_seg: {i..j-}
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
cand: A c∧ B
, 
lelt: i ≤ j < k
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
le: A ≤ B
, 
less_than: a < b
, 
flip: (i, j)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
not_wf, 
equal_wf, 
int_seg_wf, 
length_wf, 
list_wf, 
swap_wf, 
squash_wf, 
true_wf, 
swap_length, 
iff_weakening_equal, 
select_wf, 
int_seg_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
intformeq_wf, 
int_formula_prop_less_lemma, 
int_formula_prop_eq_lemma, 
swap_swap, 
and_wf, 
less_than_wf, 
lelt_wf, 
swap_select, 
eq_int_wf, 
bool_wf, 
equal-wf-T-base, 
assert_wf, 
bnot_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
uiff_transitivity, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
axiomEquality, 
hypothesis, 
isect_memberEquality, 
isectElimination, 
hypothesisEquality, 
extract_by_obid, 
intEquality, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
cumulativity, 
because_Cache, 
universeEquality, 
applyEquality, 
lambdaEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
independent_functionElimination, 
hyp_replacement, 
applyLambdaEquality, 
dependent_set_memberEquality, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
lambdaFormation, 
equalityElimination, 
promote_hyp, 
instantiate, 
impliesFunctionality
Latex:
\mforall{}[T:Type].  \mforall{}[L1,L2:T  List].  \mforall{}[i,j:\mBbbN{}||L1||].
    \{(((L2[i]  =  L1[j])  \mwedge{}  (L2[j]  =  L1[i]))  \mwedge{}  (||L2||  =  ||L1||)  \mwedge{}  (L1  =  swap(L2;i;j)))
    \mwedge{}  (\mforall{}[x:\mBbbN{}||L2||].  (L2[x]  =  L1[x])  supposing  ((\mneg{}(x  =  j))  and  (\mneg{}(x  =  i))))\} 
    supposing  L2  =  swap(L1;i;j)
Date html generated:
2017_10_01-AM-08_38_08
Last ObjectModification:
2017_07_26-PM-04_26_53
Theory : list!
Home
Index