Nuprl Lemma : member-countable-p-union
∀p:FinProbSpace. ∀A:ℕ ⟶ p-open(p). ∀s:ℕ ⟶ Outcome.  ((∃i:ℕ. s ∈ A[i]) ⇒ s ∈ countable-p-union(i.A[i]))
Proof
Definitions occuring in Statement : 
countable-p-union: countable-p-union(i.A[i]), 
p-open-member: s ∈ C, 
p-open: p-open(p), 
p-outcome: Outcome, 
finite-prob-space: FinProbSpace, 
nat: ℕ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
p-open-member: s ∈ C, 
exists: ∃x:A. B[x], 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
nat: ℕ, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
not: ¬A, 
top: Top, 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
cand: A c∧ B, 
subtype_rel: A ⊆r B, 
le: A ≤ B, 
less_than': less_than'(a;b), 
countable-p-union: countable-p-union(i.A[i]), 
pi1: fst(t), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
less_than: a < b, 
squash: ↓T, 
true: True, 
p-open: p-open(p)
Lemmas referenced : 
exists_wf, 
nat_wf, 
p-open-member_wf, 
p-outcome_wf, 
p-open_wf, 
finite-prob-space_wf, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
less_than_wf, 
intformless_wf, 
int_formula_prop_less_lemma, 
decidable__lt, 
equal-wf-T-base, 
subtype_rel_dep_function, 
int_seg_wf, 
int_seg_subtype_nat, 
false_wf, 
subtype_rel_self, 
eq_int_wf, 
assert_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
bnot_wf, 
not_wf, 
uiff_transitivity, 
assert_of_eq_int, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
imax-list-ub, 
map_wf, 
upto_wf, 
map-length, 
length_upto, 
l_exists_iff, 
l_member_wf, 
lelt_wf, 
member_map, 
equal-wf-base-T, 
member_upto2, 
decidable__equal_int, 
int_seg_properties, 
imax-list-lb, 
l_all_iff, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
sqequalRule, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesis, 
lambdaEquality, 
hypothesisEquality, 
applyEquality, 
functionExtensionality, 
functionEquality, 
dependent_pairFormation, 
setElimination, 
rename, 
because_Cache, 
unionElimination, 
equalityElimination, 
independent_isectElimination, 
dependent_set_memberEquality, 
addEquality, 
natural_numberEquality, 
dependent_functionElimination, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
instantiate, 
cumulativity, 
independent_functionElimination, 
productEquality, 
dependent_pairEquality, 
baseClosed, 
impliesFunctionality, 
setEquality, 
imageMemberEquality, 
applyLambdaEquality, 
addLevel, 
allFunctionality
Latex:
\mforall{}p:FinProbSpace.  \mforall{}A:\mBbbN{}  {}\mrightarrow{}  p-open(p).  \mforall{}s:\mBbbN{}  {}\mrightarrow{}  Outcome.
    ((\mexists{}i:\mBbbN{}.  s  \mmember{}  A[i])  {}\mRightarrow{}  s  \mmember{}  countable-p-union(i.A[i]))
Date html generated:
2018_05_22-AM-00_36_57
Last ObjectModification:
2017_07_26-PM-07_00_33
Theory : randomness
Home
Index