Nuprl Lemma : mk_applies_wf

[T:Type]. ∀[m,n:ℕ]. ∀[A:ℕn ⟶ Type]. ∀[G:k:ℕm ⟶ (A k)]. ∀[F:funtype(m n;A;T)].
  (mk_applies(F;G;m) ∈ funtype(n;λk.(A (m k));T))


Proof




Definitions occuring in Statement :  mk_applies: mk_applies(F;G;m) funtype: funtype(n;A;T) int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T apply: a lambda: λx.A[x] function: x:A ⟶ B[x] add: m natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: le: A ≤ B int_seg: {i..j-} lelt: i ≤ j < k mk_applies: mk_applies(F;G;m) subtype_rel: A ⊆B sq_type: SQType(T) guard: {T} uiff: uiff(P;Q) decidable: Dec(P) or: P ∨ Q subtract: m squash: T true: True bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b nequal: a ≠ b ∈  so_lambda: λ2x.t[x] less_than: a < b so_apply: x[s] less_than': less_than'(a;b) funtype: funtype(n;A;T) iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf funtype_wf int_seg_wf lelt_wf zero-add primrec0_lemma subtype_rel-equal subtype_base_sq int_subtype_base add-member-int_seg1 decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma decidable__lt itermAdd_wf int_term_value_add_lemma le_wf primrec-unroll eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int less_than_transitivity1 le_weakening less_than_irreflexivity eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int nat_wf add-associates add-swap add-commutes subtype_rel_dep_function int_seg_subtype false_wf subtype_rel_self intformeq_wf int_formula_prop_eq_lemma assert_wf bnot_wf not_wf equal-wf-T-base add-subtract-cancel minus-add minus-minus minus-one-mul add-mul-special zero-mul add-zero primrec_wf int_seg_properties decidable__equal_int itermMultiply_wf int_term_value_mul_lemma bool_cases iff_transitivity iff_weakening_uiff assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry cumulativity functionExtensionality applyEquality productElimination addEquality functionEquality because_Cache dependent_set_memberEquality universeEquality instantiate unionElimination imageElimination imageMemberEquality baseClosed equalityElimination promote_hyp multiplyEquality minusEquality impliesFunctionality

Latex:
\mforall{}[T:Type].  \mforall{}[m,n:\mBbbN{}].  \mforall{}[A:\mBbbN{}m  +  n  {}\mrightarrow{}  Type].  \mforall{}[G:k:\mBbbN{}m  {}\mrightarrow{}  (A  k)].  \mforall{}[F:funtype(m  +  n;A;T)].
    (mk\_applies(F;G;m)  \mmember{}  funtype(n;\mlambda{}k.(A  (m  +  k));T))



Date html generated: 2017_10_01-AM-08_40_14
Last ObjectModification: 2017_07_26-PM-04_27_58

Theory : untyped!computation


Home Index