is mentioned by
[card_st_sized_bool] | |
[card_st_vs_boolsize] | |
Thm* (i:a. P(i) f(i) = 1 2) ({x:a| P(x) } ~ (Msize(f))) | [card_st_vs_msize] |
[card_boolset_vs_mset] | |
[sized_bool_wf] | |
[boolsize_wf] | |
[sized_mset_wf5] | |
[sized_mset_wf4] | |
[sized_mset_wf3] | |
[sized_mset_wf2] | |
[sized_mset_wf] | |
[msize_wf] | |
[nsub_bij_ooc_invpair] | |
[nsub_inj_ooc_nsub_surj] | |
[nsub_inj_ooc_nsub_bij] | |
[nsub_inj_exteq_nsub_bij] | |
[nsub_surj_ooc_nsub_bij] | |
[nsub_surj_exteq_nsub_bij] | |
[nsub_inj_exteq_nsub_surj] | |
[surj_typing_imp_le] | |
[nsub_surj_imp_a_rev_inj2] | |
[nsub_bij_least_preimage_inverse] | |
[nsub_surj_imp_a_rev_inj] | |
Thm* IsEqFun(B;e) Thm* Thm* (a:, f:(a onto B). (y.least x:. (f(x)) e y) B inj a) | [nsub_surj_imp_a_rev_inj_gen] |
[compose_iter_inverses] | |
[compose_iter_bijection] | |
[compose_iter_surjection] | |
[compose_iter_injection2] | |
[iter_perm_cycles_uniform2] | |
[iter_perm_cycles_uniform] | |
[compose_iter_inj_cycles] | |
[compose_iter_injection] | |
[compose_iter_prod2] | |
[compose_iter_prod] | |
[compose_iter_sum_comp_rw] | |
[compose_iter_sum_rw] | |
[compose_iter_sum_comp] | |
[compose_iter_sum] | |
[compose_iter_id] | |
[compose_iter_point_id] | |
[card_nat_vs_nat_tuples_all] | |
[card_nat_vs_nat_tuples] | |
[card_nat_vs_nat_tuple] | |
[card_nat_vs_nat_nat] | |
[compose_iter_wf] | |
[nat_to_nat_pair_bij] | |
[nat_to_nat_pair_surj] | |
[nat_to_nat_pair_inj] | |
[nat_to_nat_pair_wf] | |
[next_nat_pair_vs_prev_nat_pair] | |
[prev_nat_pair_wf] | |
[next_nat_pair_inj] | |
[next_nat_pair_not_zeroes] | |
[next_nat_pair_wf] | |
[card_sigma_vs_nsub_sigma] | |
[nsub_add_rw] | |
[exp_exp_reduce2] | |
[exp_exp_reduce1] | |
[card_fun_vs_nsub_exp] | |
[card_pi_vs_nsub_pi] | |
[nsub_inj_factorial] | |
[nsub_inj_factorial_tail] | |
[nsub_inj_factorial2] | |
[finite_indep_sum_card] | |
[mul_assoc_from_cross_assoc] | |
[nsub_mul_rw] | |
[nsub_mul] | |
[nsub_add] | |
[nat_not_finite] | |
[fin_card_vs_nat_eq] | |
[counting_is_unique] | |
[not_nat_occ_natfuns] | |
[nsub_not_infinite] | |
[int_ooc_nat] | |
Thm* (x:k. y:B(x). Q(x;y)) (f:(x:kB(x)). x:k. Q(x;f(x))) | [dep_finite_choice] |
Thm* (x:k. y:A. Q(x;y)) (f:(kA). x:k. Q(x;f(x))) | [finite_choice] |
[surjection_type_nsub_surjection] | |
[surjection_type_surjection] | |
[ndiff_wf_nat] | |
[factorial_via_intseg_step_rw] | |
[factorial_via_intseg_step] | |
Thm* (i:. Dec(P(i))) ({i:| P(i) & (j:. j<i P(j)) }) | [least_exists2] |
Thm* (i:k. Dec(P(i))) ({i:k| P(i) & (j:i. P(j)) }) | [least_exists] |
[nsub_delete_rw] | |
[nsub_delete] | |
[nsub_is_finite] | |
[nat_plus_ooc_nat] | |
[fin_plus_nat_ooc_nat] | |
[nsub_surj_least_preimage_works] | |
Thm* IsEqFun(B;e) (a:, f:(a onto B), y:B. f(least x:. (f(x)) e y) = y) | [nsub_surj_least_preimage_works_gen] |
[nsub_surj_least_preimage_total] | |
Thm* IsEqFun(B;e) (a:, f:(a onto B), y:B. (least x:. (f(x)) e y) a) | [nsub_surj_least_preimage_total_gen] |
[nsub_inj_discr_range_bijtype] | |
Thm* Thm* (k:, f:(k inj A). Thm* ({a:A| i:k. a = f(i) } Type Thm* (& f k{a:A| i:k. a = f(i) } Thm* (& Bij(k; {a:A| i:k. a = f(i) }; f)) | [nsub_inj_discr_range_bij] |
[nsub_discr_range_surjtype] | |
Thm* Thm* (k:, f:(kA). Thm* ({a:A| i:k. a = f(i) } Type Thm* (& f k{a:A| i:k. a = f(i) } Thm* (& Surj(k; {a:A| i:k. a = f(i) }; f)) | [nsub_discr_range_surj] |
[least_satisfies2] | |
[least_is_least2] | |
[least_is_least] | |
[least_satisfies] | |
[least_wf2] | |
Thm* (least i:. p(i)) {i:| p(i) & (j:. j<i p(j)) } | [least_characterized2] |
[least_wf] | |
Thm* (least i:. p(i)) {i:k| p(i) & (j:i. p(j)) } | [least_characterized] |
[pigeon_hole] | |
[inj_imp_le2] | |
[inj_typing_imp_le] | |
[inj_imp_le] | |
[finite_inj_counter_example] | |
[delete_fenum_value_is_fenum] | |
[delete_fenum_value_is_inj] | |
Thm* Thm* (i:m. f(i) = k (Replace value k by f(m) in f)(i) = f(i) k) | [delete_fenum_value_comp2] |
Thm* Thm* (i:m. f(i) = k (Replace value k by f(m) in f)(i) = f(m) k) | [delete_fenum_value_comp1] |
[delete_fenum_value_wf] | |
Thm* (i.if i=a-1 j else f(i) fi) a inj b | [nsub_inj_fill_typing] |
[nsub_inj_lop_typing] | |
[decidable__nat_equal] | |
[eq_int_is_eq_nsub] | |
[sized_bool] | |
[sized_mset] | |
[productively_infinite] | |
[unboundedly_infinite] | |
[fin_enum] | |
[is_finite_type] |
In prior sections: int 1 bool 1 int 2 num thy 1 SimpleMulFacts IteratedBinops
Try larger context:
DiscrMathExt
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html