Nuprl Lemma : grp_leq_op_l

[g:OGrp]. ∀[a,b,c:|g|].  uiff(a ≤ b;(c a) ≤ (c b))


Proof




Definitions occuring in Statement :  ocgrp: OGrp grp_leq: a ≤ b grp_op: * grp_car: |g| uiff: uiff(P;Q) uall: [x:A]. B[x] infix_ap: y
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a grp_leq: a ≤ b infix_ap: y ocgrp: OGrp ocmon: OCMon abmonoid: AbMon mon: Mon implies:  Q prop: squash: T subtype_rel: A ⊆B guard: {T} true: True iff: ⇐⇒ Q
Lemmas referenced :  iff_weakening_equal igrp_wf grp_wf abgrp_wf subtype_rel_transitivity ocgrp_subtype_abgrp abgrp_subtype_grp grp_subtype_igrp grp_inv_assoc grp_sig_wf true_wf squash_wf grp_inv_wf grp_op_preserves_le ocgrp_wf grp_car_wf grp_leq_wf grp_op_wf grp_le_wf assert_witness
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation sqequalRule sqequalHypSubstitution lemma_by_obid isectElimination thin applyEquality setElimination rename hypothesisEquality hypothesis independent_functionElimination productElimination independent_pairEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry independent_isectElimination lambdaEquality imageElimination instantiate natural_numberEquality imageMemberEquality baseClosed universeEquality

Latex:
\mforall{}[g:OGrp].  \mforall{}[a,b,c:|g|].    uiff(a  \mleq{}  b;(c  *  a)  \mleq{}  (c  *  b))



Date html generated: 2016_05_15-PM-00_13_19
Last ObjectModification: 2016_01_15-PM-11_05_24

Theory : groups_1


Home Index