Nuprl Lemma : grp_lt_trichot

g:OCMon. ∀a,b:|g|.  ((a < b) ∨ (a b ∈ |g|) ∨ (b < a))


Proof




Definitions occuring in Statement :  grp_lt: a < b ocmon: OCMon grp_car: |g| all: x:A. B[x] or: P ∨ Q equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B ocmon: OCMon omon: OMon so_lambda: λ2x.t[x] prop: and: P ∧ Q abmonoid: AbMon mon: Mon so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  uiff: uiff(P;Q) uimplies: supposing a bfalse: ff infix_ap: y so_apply: x[s] cand: c∧ B oset_of_ocmon: g↓oset dset_of_mon: g↓set set_car: |p| pi1: fst(t) grp_lt: a < b
Lemmas referenced :  loset_trichot oset_of_ocmon_wf subtype_rel_sets abmonoid_wf ulinorder_wf grp_car_wf assert_wf infix_ap_wf bool_wf grp_le_wf equal_wf grp_eq_wf eqtt_to_assert cancel_wf grp_op_wf uall_wf monot_wf ocmon_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality applyEquality sqequalRule instantiate hypothesis because_Cache lambdaEquality productEquality setElimination rename cumulativity universeEquality functionEquality unionElimination equalityElimination productElimination independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination setEquality independent_pairFormation

Latex:
\mforall{}g:OCMon.  \mforall{}a,b:|g|.    ((a  <  b)  \mvee{}  (a  =  b)  \mvee{}  (b  <  a))



Date html generated: 2017_10_01-AM-08_15_04
Last ObjectModification: 2017_02_28-PM-02_00_02

Theory : groups_1


Home Index