Nuprl Lemma : nat_add_mon_wf2

<ℕ,+> ∈ OCMon


Proof




Definitions occuring in Statement :  nat_add_mon: <ℕ,+> ocmon: OCMon member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a exists: x:A. B[x] and: P ∧ Q prop: subtype_rel: A ⊆B nat_add_mon: <ℕ,+> grp_car: |g| pi1: fst(t) int_add_grp: <ℤ+> nat: rels_iso: RelsIso(T;T';x,y.R[x; y];x,y.R'[x; y];f) all: x:A. B[x] iff: ⇐⇒ Q implies:  Q grp_eq: =b pi2: snd(t) infix_ap: y rev_implies:  Q grp_le: b guard: {T} so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] ocmon: OCMon abmonoid: AbMon mon: Mon so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  inj_into_ocmon nat_add_mon_wf int_add_grp_wf2 ocgrp_subtype_ocmon nat_wf nat_int_grp_sig_hom assert_wf eq_int_wf le_int_wf mon_hom_inj_p_wf int_add_grp_wf mon_subtype_grp_sig grp_subtype_mon abgrp_subtype_grp subtype_rel_transitivity abgrp_wf grp_wf mon_wf grp_sig_wf rels_iso_wf grp_car_wf grp_eq_wf grp_le_wf exists_wf
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis independent_isectElimination dependent_pairFormation independent_pairFormation applyEquality sqequalRule lambdaEquality setElimination rename hypothesisEquality lambdaFormation because_Cache productEquality instantiate functionEquality

Latex:
<\mBbbN{},+>  \mmember{}  OCMon



Date html generated: 2018_05_21-PM-03_14_08
Last ObjectModification: 2018_05_19-AM-08_26_05

Theory : groups_1


Home Index