Nuprl Lemma : nat_int_grp_sig_hom

IsMonHomInj(<ℕ,+>;<ℤ+>x.x)


Proof




Definitions occuring in Statement :  nat_add_mon: <ℕ,+> int_add_grp: <ℤ+> mon_hom_inj_p: IsMonHomInj(g;h;f) lambda: λx.A[x]
Definitions unfolded in proof :  mon_hom_inj_p: IsMonHomInj(g;h;f) and: P ∧ Q monoid_hom_p: IsMonHom{M1,M2}(f) fun_thru_2op: FunThru2op(A;B;opa;opb;f) uall: [x:A]. B[x] member: t ∈ T nat_add_mon: <ℕ,+> grp_car: |g| pi1: fst(t) int_add_grp: <ℤ+> grp_op: * pi2: snd(t) infix_ap: y nat: grp_id: e inject: Inj(A;B;f) all: x:A. B[x] implies:  Q ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop:
Lemmas referenced :  equal_wf le_wf int_term_value_constant_lemma int_formula_prop_le_lemma itermConstant_wf intformle_wf decidable__le int_formula_prop_wf int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf intformeq_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__equal_int nat_properties nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation isect_memberFormation introduction cut sqequalHypSubstitution sqequalRule addEquality setElimination thin rename hypothesisEquality hypothesis lemma_by_obid isect_memberEquality isectElimination axiomEquality because_Cache natural_numberEquality lambdaFormation dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality voidElimination voidEquality computeAll dependent_set_memberEquality

Latex:
IsMonHomInj(<\mBbbN{},+><\mBbbZ{}+>\mlambda{}x.x)



Date html generated: 2016_05_15-PM-00_17_54
Last ObjectModification: 2016_01_15-PM-11_06_01

Theory : groups_1


Home Index