Nuprl Lemma : p-sep_wf
∀[p:ℕ+]. ∀[x,y:p-adics(p)].  (p-sep(x;y) ∈ ℙ)
Proof
Definitions occuring in Statement : 
p-sep: p-sep(x;y)
, 
p-adics: p-adics(p)
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
p-sep: p-sep(x;y)
, 
so_lambda: λ2x.t[x]
, 
p-adics: p-adics(p)
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
so_apply: x[s]
Lemmas referenced : 
exists_wf, 
nat_plus_wf, 
not_wf, 
equal_wf, 
int_seg_wf, 
exp_wf2, 
nat_plus_subtype_nat, 
p-adics_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
intEquality, 
applyEquality, 
setElimination, 
rename, 
hypothesisEquality, 
natural_numberEquality, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[p:\mBbbN{}\msupplus{}].  \mforall{}[x,y:p-adics(p)].    (p-sep(x;y)  \mmember{}  \mBbbP{})
Date html generated:
2018_05_21-PM-03_23_09
Last ObjectModification:
2018_05_19-AM-08_21_25
Theory : rings_1
Home
Index