Nuprl Lemma : sq_stable__ideal_p
∀r:CRng. ∀a:|r| ⟶ ℙ.  ((∀x:|r|. SqStable(a x)) 
⇒ SqStable(a Ideal of r))
Proof
Definitions occuring in Statement : 
ideal_p: S Ideal of R
, 
crng: CRng
, 
rng_car: |r|
, 
sq_stable: SqStable(P)
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
ideal_p: S Ideal of R
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
crng: CRng
, 
rng: Rng
, 
add_grp_of_rng: r↓+gp
, 
grp_car: |g|
, 
pi1: fst(t)
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
subgrp_p: s SubGrp of g
, 
and: P ∧ Q
, 
infix_ap: x f y
Lemmas referenced : 
sq_stable__and, 
subgrp_p_wf, 
add_grp_of_rng_wf, 
all_wf, 
rng_car_wf, 
infix_ap_wf, 
rng_times_wf, 
grp_id_wf, 
grp_car_wf, 
grp_inv_wf, 
grp_op_wf, 
sq_stable__all, 
sq_stable_wf, 
crng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
isect_memberEquality, 
lambdaEquality, 
because_Cache, 
functionEquality, 
applyEquality, 
universeEquality, 
independent_functionElimination, 
productEquality, 
dependent_functionElimination, 
cumulativity
Latex:
\mforall{}r:CRng.  \mforall{}a:|r|  {}\mrightarrow{}  \mBbbP{}.    ((\mforall{}x:|r|.  SqStable(a  x))  {}\mRightarrow{}  SqStable(a  Ideal  of  r))
Date html generated:
2016_05_15-PM-00_22_52
Last ObjectModification:
2015_12_27-AM-00_01_18
Theory : rings_1
Home
Index