Nuprl Lemma : set_blt_functionality_wrt_set_lt_r
∀[s:QOSet]. ∀[a,b,b':|s|].  ↑(a <b b 
⇒b (a <b b')) supposing b <s b'
Proof
Definitions occuring in Statement : 
qoset: QOSet
, 
set_lt: a <p b
, 
set_blt: a <b b
, 
set_car: |p|
, 
bimplies: p 
⇒b q
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
qoset: QOSet
, 
dset: DSet
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
set_lt: a <p b
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
guard: {T}
Lemmas referenced : 
set_lt_wf, 
set_car_wf, 
qoset_wf, 
assert_wf, 
bimplies_wf, 
set_blt_wf, 
isect_wf, 
assert_witness, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bimplies, 
assert_of_set_lt, 
set_lt_transitivity_2, 
set_leq_weakening_lt
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
inhabitedIsType, 
sqequalRule, 
isect_memberEquality_alt, 
lambdaEquality_alt, 
isectIsType, 
independent_functionElimination, 
independent_pairFormation, 
lambdaFormation_alt, 
independent_isectElimination, 
productElimination
Latex:
\mforall{}[s:QOSet].  \mforall{}[a,b,b':|s|].    \muparrow{}(a  <\msubb{}  b  {}\mRightarrow{}\msubb{}  (a  <\msubb{}  b'))  supposing  b  <s  b'
Date html generated:
2019_10_15-AM-10_32_31
Last ObjectModification:
2018_10_15-PM-08_50_01
Theory : sets_1
Home
Index