Nuprl Lemma : set_blt_functionality_wrt_set_lt_r

[s:QOSet]. ∀[a,b,b':|s|].  ↑(a <b b (a <b b')) supposing b <b'


Proof




Definitions occuring in Statement :  qoset: QOSet set_lt: a <b set_blt: a <b b set_car: |p| bimplies: b q assert: b uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T qoset: QOSet dset: DSet prop: so_lambda: λ2x.t[x] so_apply: x[s] set_lt: a <b implies:  Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q guard: {T}
Lemmas referenced :  set_lt_wf set_car_wf qoset_wf assert_wf bimplies_wf set_blt_wf isect_wf assert_witness iff_transitivity iff_weakening_uiff assert_of_bimplies assert_of_set_lt set_lt_transitivity_2 set_leq_weakening_lt
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename because_Cache hypothesis hypothesisEquality inhabitedIsType sqequalRule isect_memberEquality_alt lambdaEquality_alt isectIsType independent_functionElimination independent_pairFormation lambdaFormation_alt independent_isectElimination productElimination

Latex:
\mforall{}[s:QOSet].  \mforall{}[a,b,b':|s|].    \muparrow{}(a  <\msubb{}  b  {}\mRightarrow{}\msubb{}  (a  <\msubb{}  b'))  supposing  b  <s  b'



Date html generated: 2019_10_15-AM-10_32_31
Last ObjectModification: 2018_10_15-PM-08_50_01

Theory : sets_1


Home Index