Nuprl Lemma : module_hom_is_grp_hom

A:Rng. ∀m,n:A-Module. ∀f:m.car ⟶ n.car.  (module_hom_p(A; m; n; f)  IsMonHom{m↓grp,n↓grp}(f))


Proof




Definitions occuring in Statement :  module_hom_p: module_hom_p(a; m; n; f) module: A-Module grp_of_module: m↓grp alg_car: a.car all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] rng: Rng monoid_hom_p: IsMonHom{M1,M2}(f)
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T rng: Rng subtype_rel: A ⊆B guard: {T} uimplies: supposing a grp_of_module: m↓grp add_grp_of_rng: r↓+gp grp_car: |g| pi1: fst(t) rng_of_alg: a↓rg rng_car: |r| prop: module: A-Module module_hom_p: module_hom_p(a; m; n; f) and: P ∧ Q fun_thru_2op: FunThru2op(A;B;opa;opb;f) grp_op: * pi2: snd(t) rng_plus: +r
Lemmas referenced :  grp_hom_formation grp_of_module_wf2 grp_subtype_igrp abgrp_subtype_grp subtype_rel_transitivity abgrp_wf grp_wf igrp_wf module_hom_p_wf alg_car_wf rng_car_wf module_wf rng_wf grp_car_wf grp_of_module_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination setElimination rename hypothesisEquality hypothesis applyEquality instantiate independent_isectElimination sqequalRule because_Cache functionEquality productElimination

Latex:
\mforall{}A:Rng.  \mforall{}m,n:A-Module.  \mforall{}f:m.car  {}\mrightarrow{}  n.car.    (module\_hom\_p(A;  m;  n;  f)  {}\mRightarrow{}  IsMonHom\{m\mdownarrow{}grp,n\mdownarrow{}grp\}(f))



Date html generated: 2016_05_16-AM-07_27_09
Last ObjectModification: 2015_12_28-PM-05_07_48

Theory : algebras_1


Home Index